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Figure 1: A system flowchart of the proposed tracker based on the Atkinson-
Shiffrin Memory Model.

The online tracking research community have developed a number of
trackers. Some [2] are highly sensitive and accurate in the short term, while
others are relatively conservative but robust over the long term (e.g., [3]).
In other words, some trackers can be regarded as short-term systems while
others can be regarded as long-term systems. The power of the Atkinson-
Shiffrin Memory Model (ASMM) to track objects by co-operation between
the long- and short-term memory stores has motivated us to design a tracker
that integrates a short- and long-term system to boost tracking performance.

In this paper, we propose the MUIti-Store Tracker (MUSTer) based on
the ASMM. A system flowchart of MUSTer is shown in Figure 1. MUSTer
consists of one short-term store and one long-term store that collaborative-
ly process the image input and track the target. An Integrated Correlation
Filter (ICF) is employed in the short-term store to perform short-term pro-
cessing and track the target based on short-term memory and spatiotempo-
ral consistency. This component generally works accurately and efficiently
in relatively stable scenarios. In addition, another relatively conservative
long-term component based on keypoint matching-tracking and RANSAC
estimation is introduced to conduct the long short-term processing on the
fly. This interacts with the short-term memory stored in an active set of
keypoints using forward-backward tracking, and it also retrieves the long-
term memory for matching and updates the long-term memory based on the
RANSAC estimation results and the forgetting curve. During tracking, the
outputs of both the short-term and long short-term processing are sent to
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Figure 2: Quantitative comparison in CVPR2013 OOTB. The performance
score for each tracker is shown in the legend. For each figure, only the top
10 trackers are presented.

a controller, which decides the final MUSTer output and the ICF update.
Specifically, the short-term memory in ICF is reset when the short-term pro-
cessing output is highly inconsistent with the long-term memory encoded
by the output of the long short-term processing. This enables the recovery
of the short-term tracking after dramatic appearance changes such as severe
occlusion, the object leaving field-of-view, or rotation.

The short-term component is used to provide instant responses to the
image input based on short-term memory. For accurate and efficient short-
term processing performance, we employ Integrated Correlation Filters (ICF-
s), which are based on the Kernelized Correlation Filters (KCFs) [2] and the
Discriminative Scale Space Correlation Filter (DSSCF) [1]. The ICF is a
two-stage filtering process that performs translation estimation and scale es-
timation. The long-term memory of the target appearance is modeled by
a total feature database M = 7 U B that consists of a foreground (target)
feature database 7 and a background feature database B:

T={(d.p))}0, B={di} . M
Here, d; € R128 is the 128-dimensional Scale-invariant Feature Transform
(SIFT) descriptors of the keypoints. Ny~ and N are the respective numbers
of descriptors.

The proposed tracker was implemented using Matlab & C++ with OpenCv
library. The average time cost on CVPR2013 Online Object Tracking Bench-
mark (OOTB) [5] is 0.287s/frame on a cluster node (3.4GHz, 8 cores, 32GB
RAM). We report in the paper the evalutions on OOTB [5] and ALOV++
(Amsterdam Library of Ordinary Videos) dataset [4] by comparing MUSTer
with a number of state-of-the-art trackers. The results on CVPR2013 OOBT
is shown in Fig. 2. The experimental results on two large datasets demon-
strate that the proposed tracker is capable of taking advantage of both the
short-term and long-term systems and boosting the tracking performance.
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This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

The code to reproduce the experiments is available on https://sites.google.com/
site/multistoretrackermuster/
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