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Figure 1: This image found over internet was captured with aperture size
f/5.6 and exposure time 1/500s. When this supposedly clear image is viewed
in its original resolution, slight blurriness can still be noticed. It is a general
phenomenon.

Photos awaken our pictorial memories. A good photo generally contains
clear and sharp objects that are important. With the prevalence of high-
resolution imaging sensors, blurriness and its spatial change become per-
ceivable. We name the commonly occurred small defocus blur just notice-
able blur (JNB), which is formally defined as blur spanning about 3-9 pixels
and losing a quantitatively insignificant level of structures. It commonly ex-
ists in images. It actually gives us useful information to understand the
scene. A typical example is shown in Fig. 1, where sight blurriness implies
foreground and the salient object we should notice.

We show a new direction to understand small image blur via sparse
representation based on external data. Specifically, we found that when de-
composing local image patches into dictionary atoms in an additive manner,
clear and JNB dictionaries show quantitatively and visually different results.
The diverged effect manifests that dictionary atoms can characterize struc-
ture in just noticeable blur images, thus amplifying the inherent difference
between slight blur and clear regions. Based on it, we propose our simple
but expressive JNB feature. It is verified on image data in accordance with
our finding.

Sparsity JNB Feature Our new blur metric learns a blur dictionary D
following Eq. (1)

min
xi

∥yi −Dxi∥2
2 s.t. ∥xi∥0 ≤ k. (1)

The input is a set of n signals Y = {y1, . . . ,yn} ∈ Rd×n, which consists
100,000 patches randomly cropped from 1,000 natural images blurred by the
Gaussian kernel of σ = 2. D ∈Rd×m is an over-complete dictionary captur-
ing all atomic information lying in Y . xi is the coefficient to reconstruct yi.
The maximum number k corresponding to the used dictionary atoms is set
to 5 in patch decomposition and the total dictionary size is 128. Basically,
the sparse representation is to use dictionary atoms to capture elementary
information.

After D is learned, it is applied to all image patches, both JNB and
clear, for blur identification. For each new patch input yi, we use another
spare representation to decompose it into basic atoms. It is expressed as

min
xi

∥xi∥1 s.t. ∥yi −Dxi∥2 ≤ ε, (2)

where ε is a constant (0.07 in our experiment). Different from the tradi-
tional form that selects a relatively large ε to resist noise and outliers, we
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set this value small to make the resulting averaged PSNR between the orig-
inal and reconstructed patches over 50. This special setting is based on the
consideration that detail-level structural information is central to image blur
assessment in human perception.

The output atoms and corresponding coefficients reflect whether the in-
put is blurred or not and how strong it is. We build our sparsity feature fa
for input yi as the number of non-zero elements in xi, expressed as

fa = ∥xi∥0. (3)

Note these patches should not be flat in color in order to avoid classification
ambiguity. Actually it does not matter that much if we label one flat patch
as blur or clear for many applications such as deblurring and blur magnifi-
cation.

We verify the generality of the phenomenon that less used dictionary
atoms correspond to stronger blurriness. For blur standard deviation σ and
sparsity feature values f , their relationships obey a logistic regression func-
tion as

f =
a

1+ exp(bσ + c)
+d, (4)

where a, b, c and d are the fitted variables with corresponding values 39.49,
4.535, −3.538, and 18.53 respectively. Eq. (4) allows our system to even
estimate the degree of blurriness for each patch even if it is small, and em-
powers spatial-varying blur strength estimation.

Experiments and Comparisons Our method does not handle flat regions
due to their inherent ambiguity. As aforementioned, it does no matter to
determine them as sharp or blur. We simply mask them out to indicate un-
certain pixels. We fill in these holes using closed form matting [1]. The final
blur map is bilateral filtered to remove noise and preserve sharp boundaries.

We provide an example in Fig. 2. (a) is the input image. Our raw feature
in (b) is already powerful enough to classify the background toy as blurry.
The final map in (d) is perceptually more reasonable. Given the color input
and the blur map, we apply a graph-cut algorithm to label the blur region in
(c). It is close to the ground-truth.

[1] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution
to natural image matting. pages 228–242, 2008.
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