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Recent state-of-the-art performance on human-body pose estimation has
been achieved with Deep Convolutional Networks (ConvNets). Traditional
ConvNet architectures include pooling and sub-sampling layers which re-
duce computational requirements, introduce invariance, and prevent over-
training. These benefits of pooling come at the cost of reduced localization
accuracy. In this paper we introduce a novel architecture which includes
an efficient ‘position refinement’ model that is trained to estimate the joint
offset location within a small region of the image. This refinement model
is jointly trained in cascade with a state-of-the-art ConvNet model [3] to
achieve improved accuracy in human joint location estimation. An overview
of the detection archiecture is shown in Figure 1.

128x256x256 

128x128x128 

128x128x128 

128x64x64 

Coarse Heat-Map Model 

conv 

conv 

3x conv 

pool conv pool 
2xconv+ 

pool 

pool conv pool 
2xconv+ 

pool 

Crop 

at 

(x,y) 14x128x36x36 

14x128x18x18 

14x128x18x18 

14x128x9x9 

3x256x256 

14x32x32 

coarse (x,y) 

Fine Heat-

Map Model 

lcn 

lcn 

Final (x,y) 

14x36x36 (¢x, ¢y) 

refinement 

Figure 1: Overview of our Cascaded Architecture

Inspired by the work of Tompson et al. [3], we use a multi-resolution
ConvNet architecture (Figure 2) to implement a sliding window detector
with overlapping contexts to produce a coarse heat-map output. This net-
work outputs a low resolution, per-pixel heat-map, which represents the
likelihood of a joint occurring in each spatial location.
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Figure 2: Multi-resolution Sliding Window Detector With Overlapping
Contexts

If adjacent pixels within feature maps are strongly correlated (as is nor-
mally the case in early convolution layers) then we show that i.i.d. dropout
will not regularize the activations and will otherwise just result in an effec-
tive learning rate decrease. Instead we introduce SpaitalDropout - a modi-
fied dropout implementation - which allows us to improve upon the model
of [3] by promoteing activation independence across feature maps.

We use the architecture of Figure 1 as a platform to discuss and empiri-
cally evaluate the role of Max-pooling layers in convolutional architectures
for dimensionality reduction and improving invariance to noise and local
image transformations. The results in Figure 3 shows that our cascaded
archiecture is able to recover spatial accuracy on the face (Figure 3a), and
to a lesser extent on the wrist joint (Figure 3b), even in the presence of large
pooling and sub-sampling in the coarse heat-map model. For this evaluation
we use the standard PCK measure [2] on the FLIC dataset [2].

Our descriminative archiecture is able to outperform existing state-of-
the-art on the FLIC and MPII [1] datasets. Figures 4a and 4b shows the
PCK and PCKh results on the FLIC and MPII datasets respectively. Figure 5
shows a selection of joint predictions on the MPII test-set.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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(a) Face
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(b) Wrist

Figure 3: Performance improvement from cascaded model
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(a) FLIC
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Figure 4: Our model performance on two standard datasets compared to
state-of-the-art

Aditionally, we carried out an informal user study to estimate the sta-
tistical variation of human annotators on the FLIC dataset. From this ex-
periement we can conclude that the UV error variance of our detector ap-
proaches the variance of human annotations.

Figure 5: Our Model‘s Predicted Joint Positions on the MPII-human-pose
database test-set[1]
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