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Visual burstiness [3] tends to dominate the similarity measure in image re-
trieval and classification, which degrades the quality of the comparison, as
other non-bursty yet possibly distinctive features have a comparatively lower
contribution. Various strategies have been proposed to discount the contri-
bution of bursts on the similarity measure. Some are inspired by text like
the power-law normalization [5] for bag-of-words or the Polya or Dirichlet
models [1]. These strategies have been pragmatically extended to and im-
proved for more complex image vector representations such as VLAD [2].
They are also standardly used in matching approaches like Hamming Em-
bedding [4] or selective match kernels (SMK/ASMK) [6].

Fig. 1 illustrates a representative example of bursts in an image. De-
spite the similarity in appearance, one might expect a high density of points
around each burst in the descriptor space, which, however, is far from being
true. Isolated descriptors (not belonging to any group) appear to have the
same density as bursty ones (belonging to some group), while bursts have
arbitrary shape and large extent. One cannot hope that bursts will fit within
the cells of a codebook. Therefore, we propose an early burst detection,
before quantizing descriptors. We compare pairwise distances of all patches
and join pairs whose distance is below a certain threshold. We then find the
connected components and color them as bursty groups in Fig. 1.

Given two local image features f ,g, we define feature kernel function

k( f ,g) = ku(u f ,ug)ks(s f ,sg)kθ (θ f ,θg), (1)

consisting of three factors, namely the descriptor kernel ku, the scale kernel
ks and the orientation kernel kθ . Here, u f ,s f ,θ f are the descriptor, scale and
orientation of feature f . Intuitively, two patches belong in the same burst
if they are similar in appearance and have similar scales and orientations.
Descriptor kernel ku measures the similarity of a pair of descriptors x,y∈Rd

and is a function of the inner product z = 〈x,y〉. In particular, we adopt a
generative model for a binary classifier: if B is the class of descriptor pairs
that belong to the same burst and B is its complement, we define

ku(x,y) = p(B|〈x,y〉) = p(B|z). (2)

Here, p(B|z) is the posterior probability of B given z and can be formulated
via class-conditional densities, p(z|B), p(z|B). We train a classifier from
a dataset of matching/non-matching patch pairs [7], where these densities
are modeled as normal densities, fitted to data samples according to max-
imum likelihood. Scale and orientation kernels employ a Gaussian and a
von Mises kernel respectively.

Given an image, we construct its affinity matrix K including all pair-
wise feature similarities, Ki j = k( fi, f j) where kernel k is given by (1). The
affinity matrix is the only input for burst detection. We examine a number of
kernel methods to detect the bursts from K. Preliminary qualitative evalua-
tion shows that connected components is the fastest and most effective one,
so this is adopted in most quantitative experiments.

The result of burst detection is a partition of its features into groups.
To aggregate, we simply take the average of the descriptors in each group
and `2-normalize. Discarding geometry, this yields a set of descriptors to
represent the image, so any encoding/retrieval model applies. We follow
VLAD [2] and SMK/ASMK [6] in particular. We also follow two aggrega-
tion strategies: symmetric and asymmetric, depending on whether query de-
scriptors are aggregated or not. We apply different thresholds to the affinity
matrix to vary the number of bursts such that aggregation% — the propor-
tion of aggregated to original descriptors — varies in the range of 10-100%.
It turns out that asymmetric is superior for low aggregation%.

Fig. 2 compares three different initial feature sets (-S, -M, -L) on Hol-
idays and measures mAP vs. absolute number of descriptors per image,
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The clear winner amongst all clustering methods is a sim-
ple strategy performing the connected component analysis
of the thresholded matrix.

Finally, we propose an asymmetric aggregation method:
we apply our burst detection method on database side but do
not aggregate the query descriptors. This further improves
the performance while offering a memory footprint per im-
age identical to the one of our symmetric burst aggregation.

The paper is organized as follows. Section 2 introduces
our representation and retrieval model. Section 3 discusses
the concept of visual burst and proposes our method to de-
tect bursts. Section 4 evaluates our methods on public re-
trieval benchmarks. Our results demonstrate the benefits of
our approach, which improves the state-of-the-art in mem-
ory/performance trade-off.

2. Representation and matching
We assume an image is represented by a set F of lo-

cal features, where each feature f ∈ F is represented by
a d-dimensional local descriptor uf , local scale sf and ori-
entation θf . We ignore position because we are not using
geometrical information to match two images, but rather to
analyze similarities within images. We further assume that
each descriptor x = uf is quantized on a codebook C of k
visual words, or cells. We adopt the matching model [38],
whereby the similarity of images F ,G is measured by

S(X ,Y) = ν(X )ν(Y)
∑

c∈C
wcM(Xc,Yc), (1)

where X ,Y are the descriptors of F ,G respectively, Xc are
the descriptors of X assigned to cell c, M is a cell sim-
ilarity function, wc is a weighting factor for c and ν(X )
is a normalization factor such that self-similarity of X is
S(X ,X ) = 1. Although (1) is a general model that in-
cludes as special cases several popular methods like bag of
words (BoW) [36], VLAD [18] and Hamming Embedding
(HE) [14], it is clearly motivated by discarding geometric
information for efficiency reasons and searching e.g. by an
inverted file structure.

We would rather like to detect burstiness at an early stage
to fuse them, and to use any standard search infrastructure
off-the-shelf. Therefore, given an image F , we detect fea-
ture bursts in F and represent it by a set of aggregated de-
scriptors. This is an off-line operation, i.e., the descriptors
can be quantized, encoded and searched as usual.

For the cell similarity function M, we use VLAD [18,
19] and SMK/ASMK [38]. These are two methods tar-
geted to different scenarios corresponding to different mem-
ory/speed/accuracy compromises. Our descriptor aggrega-
tion can be combined and provide benefits in both frame-
works. Interestingly, the state-of-the-art ASMK, which is
also an aggregated representation intended to address the
burstiness problem, is complementary to our strategy.

Figure 1. An image along with the features of the six most popu-
lated bursts detected. A dot is shown at the position of each fea-
ture, colored according to the burst it belongs to; the remaining
features are not shown.
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Figure 2. The 1610 features of the image of Fig. 1 in descriptor
space. After PCA analysis, we plot two of the principal compo-
nents found (component 6 vs. 12). Colored groups of points corre-
spond to the six most populated bursts, exactly as in Fig. 1. Gray
points correspond to smaller bursts. Smaller light gray dots are
isolated descriptors that do not belong to any burst.

3. Early detection of visual bursts
What are bursts? As a representative example, Fig. 1 de-

picts a clean view of a building exhibiting a lattice structure
of almost identical tiles formed by its windows. To visualize
the resulting groups of similar patches, we extract normal-
ized RootSIFT [1] descriptors on Hessian-affine [23] fea-
tures, compute pairwise distances, and find the connected
components formed by joining pairs whose distance is be-
low a certain threshold. This is a simple but very effective
approach. By coloring features according to their group, it
is clearly seen that the same pattern of 5-6 groups appears
around every window on the building surface.

Since patches are very similar in appearance, one might
expect a high density of points around each burst in the de-

Figure 1: An image along with the features of the six most populated bursts
detected. A dot is shown at the position of each feature, colored according
to the burst it belongs to.

aggregation% 1.000 0.764 0.638 0.556

k = 16 41.3 42.7 44.1 45.0
k = 64 46.3 47.5 48.3 48.8

Table 2. VLAD mAP performance vs. aggregation% on Holidays-
L plus Flickr 100k distractors for two vocabulary sizes.

for low aggregation% asymmetric is superior, and this ob-
servation holds for all our experiments, so we limit to this
strategy for the remaining results. This behavior can be ex-
plained by the fact that under severe aggregation on both
images, most matches are lost. We also observe an im-
pressive improvement on the memory-performance trade-
off: we can keep only 30% of the original descriptors for a
performance drop of merely 1%.
Initial features. Fig. 9 compares three different initial fea-
ture sets on Holidays and measures mAP vs. absolute num-
ber of descriptors/image, which directly reflects memory.
Now comparing the three sets for any number of descrip-
tors, the largest set maintains a gain of over 10% over the
smallest one. This is another aspect of the trade-off and
suggests a way to improve performance: augment the initial
features, aggregate, and gain in mAP at the same memory.
Imbalance factor. Fig. 10,11 investigate the imbalance
factor [37] on Holidays-L, Oxford and Paris. By aggre-
gating bursty features at an early stage, we make the in-
verted file more balanced. Interestingly, the imbalance fac-
tor exhibits a minimum at an aggregation% which gives at
the same time a good memory-performance trade-off, e.g.
60%, 30% respectively for SMK*/ASMK* on Holidays-L.
In terms of query cost, the benefit of improved imbalance
factor should be multiplied by the benefit due to decreased
memory: indeed, query time is linear in aggregation%.
Large scale. Table 3 shows large scale results on Holidays-
L and Oxford plus distractors. It is interesting that e.g. in
Oxford, the result is more promising than at small scale:
we can save 15% of memory at no performance cost and
increase efficiency at the same time.
Comparison to the state of the art. Table 4 shows
state-of-the-art results compared to our best results on
ASMK*. We only compare to methods relating to vocab-
ularies and descriptor representation and not e.g. spatial
matching [26],[4], query expansion [7],[40], feature aug-
mentation [43],[1] or nearest neighbor re-ranking [30],[10].

The first group of methods relies on a large vocabulary
(1M or more) and does not include a descriptor signature.
Performance may be improved by learning a finer vocabu-
lary on a larger training set [24], which is a costly off-line
process, or using the extremely fine partition of a multi-
index [3],[5], which cannot be fully inverted. The second
group relies on a smaller vocabulary (100k or less) and em-
beds a descriptor signature, e.g. a Hamming code [13],[38]
as in this work, or product quantization code [31],[17]. This
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Figure 8. SMK*/ASMK* performance vs. aggregation% on
Holidays-L for symmetric and asymmetric aggregation. Vocab-
ulary size k = 65k; selectivity exponent α = 3.
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Figure 9. ASMK* performance vs. average number of aggregated
descriptors per image on Holidays for three different initial feature
sets and different values of selectivity exponent α. Vocabulary
size k = 65k; asymmetric aggregation. Note that the rightmost
measurement corresponds to aggregation% less than 1.

approach is superior, but requires additional space.
The third group includes ASMK* [38] and this work.

Here there is still a descriptor signature, but the number of
descriptors is reduced, as indicated by aggregation%, which
is different for each dataset. Despite the lower memory and
faster query, these methods are superior to previous ones.
Additionally, we get a performance gain over [38] using
multiple assignment; in particular, the five nearest visual
words as in [38]. In Holidays, we start from the larger fea-
ture set Holidays-L and aggregate such that the total number
of features is not higher than in [38], as in Fig. 9. In the re-
maining datasets, the gain is due to absolute improvement
in the default feature set.

Figure 2: ASMK* mAP vs. average number of aggregated descriptors/image
on Holidays for three different initial feature sets and values of selectivity
exponent α . Vocabulary size k = 65k; asymmetric aggregation.

which directly reflects memory. The largest set maintains a gain of over
10% over the smallest one. This is a key aspect of the trade-off and suggests
a way to improve performance: augment the initial features, aggregate, and
gain in mAP at the same memory. Our conclusion is that, by fusing the de-
scriptors before feeding them to the indexing or search system, we reduce
the computational cost in both quantization and retrieval, typically by a fac-
tor of two. We also reduce the memory footprint in the same proportion for
search engines employing an inverted file; or, performance may be increased
at the same memory.
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