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Figure 1: Our layered approach can well handle multiple independently moving objects and reliably estimate their motion. The depth map provides
the depth ordering of layers and solves a computational bottleneck for layered models. (Please see the main paper for our detected occlusions and the

estimated motion by a comparison method).

Introduction. We address the problem of segmenting a scene into moving
layers and estimating the 3D motion of each layer from an RGBD image
sequence. Although the depth information simplifies some common chal-
lenges in vision, its noisy nature brings new challenges for RGBD scene
flow estimation. In particular, the depth boundaries are not well-aligned
with RGB image edges, as shown in Figure 2. As a result we cannot accu-
rately localize the 2D motion boundaries using depth. Furthermore, depth is
missing around occlusion and disocclusion regions. Occlusions are a major
source of errors to both the 2D optical flow formulation and its 3D extension
to the RGBD data.

Layered models are a promising approach to model occlusions in RGB
image sequences [7]. Recent RGB layered methods [5, 6] have obtained
promising results in the presence of occlusions, but are computationally ex-
pensive. One bottleneck is to infer the depth ordering of layers, which often
requires searching over a combinatorial space (K! possibilities for K layers).
We propose using the depth information from RGBD data to solve the depth
ordering problem for layered models. Our work is based on a surprisingly
simple observation that depth determines depth ordering, as shown in Fig-
ure 1. The depth further allows us to estimate the 3D rotation and translation
for each independently moving layer. The resultant 3D rigid motion serves
as a stronger prior to constrain the per-layer motion than pairwise Markov
random field (MRF) models.
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Figure 2: Crop of region around the left hand in Figure 1. The depth bound-
aries are not well-aligned with object boundaries in the 2D image plane.
However, the noisy depth is sufficient to decide the depth ordering of the
foreground and the background.

Model. Given a sequence of images and depth {I;,z; },1 <t < T, we want
to segment the scene into moving layers and estimate the motion for each
layer. We assume that the scene consists of K independently moving layers,
ordered in depth [3, 4]. To model the layer segmentation, we use K — 1
continuous support functions for the first K — 1 layers. The support function
for the kth layer at frame #, g, encodes how likely every pixel is visible
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in that layer at frame 7. The Kth layer is background and has no support
function. The motion for each layer includes both the 2D motion in the
image plane {u;, v, } and the change in depth w;.

Probabilistically we want to solve for the most likely layer support func-
tions and motion fields given the image evidences. We can decompose the
posterior distribution using Bayesian rules as
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where the first/second term describes how the next image/depth depends on
the current image/depth, the motion, and the layer support. The third term
uses semi-parametric models to capture both the global behavior and local
deviations of the scene flow, the fourth term describes how the layer support
non-rigidly evolves over time, and the last term uses conditional random
field to describe how the layer support depends on the RGB images.

Result. We evaluate our layered method using several datasets. On the
widely used Middlebury benchmark, the average error for our approach is
less than half of the state-of-the-art SRSF method [2]. On a variety of real
sequences, our method obtains visually comparable or better results, par-
ticularly for scenes with several independently moving objects and large
occlusions. To further innovations, we make our MATLAB code publicly
available at the first author’s webpage [1].

Table 1: Average root mean squared (RMS) error and average angular error
(AAE) results on the Middlebury 2002 dataset.

| Teddy Cones
RMS AAE RMS AAE
Our method | 0.09 0.17 0.12 0.13
SRSF [2] 0.49 0.46 0.45 0.37
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