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Energy minimization is a well known NP-hard combinatorial problem which
arises in MAP inference in graphical models. The simplest variant with pair-
wise interactions and binary variables has a prominent role. It is utilized by
many approximation and reduction methods for multi-label instances or bi-
nary instances with high-order interactions. It can be expressed as quadratic
pseudo-boolean optimization (QPBO) [1] and max-flow/min-cut algorithms
can be applied to find a partial optimal solution, having some variables un-
decided. A complete optimal solution is always found by QPBO e.g. for
submodular instances.

The key prerequisite for solving the problem efficiently has been so far
to come up with a max-flow algorithm working well on vision instances.
The popular algorithm by Boykov and Kolmogorov [2] fulfills this role. A
recent empirical comparison of max-flow algorithms by Verma and Batra [5]
reveals that some other contemporary implementations are more suitable for
instances with dense graphs.

We show in this paper that there is a different principle which can be
also turned into an efficient solver. The problem has a natural linear pro-
gramming (LP) relaxation which is known to be half integral in the case of
binary variables. This means that all components of each optimal solution
are in {0, 1

2 ,1}. Moreover, the solution coincides with the result of QPBO
since undecided variables are indicated by value 1

2 . An example of LP re-
laxation variables and constraints is given in Figure 1.

We present how the simplex algorithm can be tailored to solve the LP
relaxation very efficiently in linear space. A special structure formed by
basic and nonbasic variables in each stage of the algorithm is identified and
utilized to perform the whole iterative process combinatorially over an input
graph G = (V,E) rather than algebraically over the simplex tableau. Note
that customized versions of the simplex method with similar properties have
already been proposed for transportation, assignment, minimum cost-flow
or even max-flow problems. They are known as the network simplex algo-
rithms [3].

To outline the main idea, consider a linear program

min{〈c,x〉 | Ax = b, x≥ 0}

where A ∈ Rm×n, m ≤ n, rank(A) = m, b ∈ Rm, and c ∈ Rn. Let B be a
basis, i.e., a set of m indices of linearly independent columns of A. Let
N be the set of remaining n−m nonbasic indices. The constraint equa-
tions can be rewritten as BxB+NxN = b where B is invertible and xB, xN
are vectors of basic and nonbasic variables, respectively. This further gives
IxB+B−1NxN = B−1b which is the form essential for the simplex method
as the simplex tableau is composed of elements of I, B−1N and B−1b.

Each basic variable xi, i ∈ B can thus be expressed as a linear combina-
tions of nonbasic variables:

xi = βi− ∑
j∈N

αi jx j.

We prove that, given a basis B and a basic variable xi of the LP relaxation, βi
and nonzero coefficients αi j can be retrieved easily from G. Assuming that
xi is a basic variable in an object v ∈ V , all nonbasic variables x j such that
αi j 6= 0 are located in objects and objects pairs that form a path starting in
v which possibly closes a loop to itself. The union of all such paths creates
a subgraph of G which we call a dependency graph. It consists of mutually
disjoint dependency components that cover all the objects in G. Each of the
components is a rooted tree or a subgraph with one cycle. An example is
depicted in Figure 2. Similarly, for a basic variable in an object pair e ∈ E,
all αi j 6= 0 are located in (up to two) adjacent dependency components. This
theoretical characterization is utilized by the proposed graph-based simplex
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Figure 1: An energy minimization over a graph with objects u, v forming an
object pair {u,v}, together with its LP relaxation variables and constraints.
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Figure 2: (a) An energy minimization graph and (b) an example of its
dependency subgraph. Roots of tree components are colored in gray.

algorithm. We show it is sufficient to maintain the dependency graph and
in each iteration to compute only a fraction of coefficients in the simplex
tableau by traversing one or two dependency components. Experiments
done using vision instances have revealed the following facts:

• The simplex algorithm performs O(|E|+ |V |) iterations.

• The average size of dependency components is constant or nearly
constant for nonsubmodular instances and submodular instances where
unary potentials are more dominant than pairwise potentials.

• Dependency components are usually large in the case of submodular
instances with dominant pairwise potentials.

We have verified the favorable problem classes using instances arising in
Decision Tree Field (DTF), Super Resolution, Deconvolution and Shape
Fitting. Running times of our algorithm were compared to those used by
max-flow based QPBO solver by Kolmogorov. We achieved a better per-
formance in the case of DTF and a reasonable, competitive response for the
other problems.

We conclude that the proposed algorithm gives a practical benefit (due
to its performance e.g. on DTF instances) and offers a good opportunity
for further research since it is still relatively unexplored comparing to the
max-flow problem which has been intensively studied for a long time. It
also gives a hope for a generalization of the method to the LP relaxation
of multi-label problems. This is a much more difficult problem, as hard
as general LP [4], however, similar dependency structures are observable
there. We think that the presented applicability of the simplex algorithm in
the binary setting should encourage such attempts.
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[4] Daniel Průša and Tomáš Werner. Universality of the local marginal
polytope. In Conf. on Computer Vision and Pattern Recognition, pages
1738–1743, 2013.

[5] Tanmay Verma and Dhruv Batra. Maxflow revisited: An empirical com-
parison of maxflow algorithms for dense vision problems. In Proceed-
ings of the British Machine Vision Conference, pages 61.1–61.12, 2012.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

