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Content based image retrieval (CBIR) is highly relevant in medical imaging,
since it makes vast amounts of imaging data accessible for comparison dur-
ing diagnosis. Finding image similarity measures that reflect diagnostically
relevant relationships is challenging, since the overall appearance variability
is high compared to often subtle signatures of diseases. To learn models that
capture the relationship between semantic clinical information and image
elements at scale, we have to rely on data generated during clinical rou-
tine (images and radiology reports), since expert annotation is prohibitively
costly.

The problem of learning relations between local image regions and la-
bels on the image level can be posed as a multi-label multi-instance learning
(MIL) problem. Retrieval related to clinical findings such as lung textures
poses a very particular form of MIL different to standard MIL metric learn-
ing techniques in several aspects. The number of instances in the bags is
substantially higher compared to standard MIL data reported in literature
(� 1000 vs. ∼ 10 as in e.g. [1, 2]) or MI benchmark datasets such as Fox,
Tiger, Elephant. The optimization problem in [1] grows quadratically with
the number of instances. Furthermore, when analysing medical imaging
data, the bags are heavily skewed, each bag containing a large portion of
healthy instances since even patient lungs contain healthy tissue. This poses
challenges to distance definitions on the bag level where the minimum dis-
tance among the instances of two bags is used to judge their relationship
[1, 2].

We demonstrate that re-mapping visual features extracted from medical
imaging data based on weak image volume level label information creates
descriptions of local image content that capture clinically relevant informa-
tion. These labels can be extracted from radiology reports that describe
findings in image volumes. Results show that these features enable higher
recall and precision during retrieval compared to visual features. Further-
more, after learning, we can map specific semantic terms describing disease
patterns to localized image volume areas.

The method consists of a training and an indexing- or application phase.
During training multiple dense, random, independent partitionings of the
feature space are generated by a random ferns ensemble [3]. Based on the
label distributions in the resulting partitions, a remapping of feature vectors
is generated that captures the link between appearance and weak labels. In
the indexing- or application phase, an ensemble affinity for a novel record to
each class is calculated, and a corresponding semantic profile feature vector
is generated.

For the experimental validation we created a weakly labeled data set
from the labeled lung data. We performed experiments on a set of 300
high resolution computed tomography (HRCT) scans of lungs. All vox-
els in the images are labelled into one of five tissue classes: healthy lung
texture and four types (ground-glass, reticular pattern, honey combing, em-
physema) occuring in interstitial lung diseases (ILD). In advance, we per-
form over-segmentation of the volumes to supervoxels of an average size of
1cm3. We rebag sets of supervoxels in a way to from training data equiv-
alent to what would be training data from clinical source for the proposed
algorithm. For our experiments, we extract two texture descriptors for each
supervoxel: (1) 1200-dimensional Texture Bags on Local Binary Patterns
(BVW) and (2) 52-dimensional Haralick features around the center of the
supervoxel. For each descriptor, we generate a semantic profile mapping
(SP-BVW and SP-Haralick). Based on a set of queries, we rank the training
data using Euclidean distance among 4 feature vectors. Figure 1 (b) shows
ground truth labelings of a volume, and figure 1 (b) a labeling obtained by
assuming that the highest semantic profile coefficient is a good estimator for
the correct label. Figure 2 shows precision-recall curves for the five tissue
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Figure 1: In medical imaging (a) only a small part of the information cap-
tured by visual features relates to relevant clinical information such as dis-
eased tissue types (b). Information for learning is typically only available as
sets of reported findings on the image level. We demonstrate how to learn a
mapping of these weak semantic labels to individual voxels (c). This results
in good labeling accuracy (d), and improved retrieval (d).
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Figure 2: Precision Recall curves for two anomaly classes. Semantic Pro-
files (SP-BVW, SP-Haralick) consistently outperform the corresponding vi-
sual descriptors BVW and Haralick.

classes. The proposed method offers favourable runtime with less than three
minutes for learning on 615000 instances and five classes. The calculation
of the semantic profiles of 7526 descriptors (one lung) takes 1.37 seconds.
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