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Part-based representations are widely used in visual recognition. In partic-
ular, deformable part models (DPMs) [4] have been effective for generic
object category detection. DPMs update pictorial structure models, which
date back to the 1970s [5], with modern image features and machine learn-
ing algorithms.

Convolutional neural networks (CNNs) are another influential class of
models for visual recognition. CNNs also have a long history [6, 9, 10], and
have resurged over the last two years due to good performance on image
classification [8], object detection [7], and more recently a wide variety of
vision tasks.

These two models, DPMs and CNNs, are typically viewed as distinct
approaches to visual recognition. DPMs are graphical models (Markov ran-
dom fields), while CNNs are “black-box” non-linear classifiers. In this pa-
per, we ask: Are these models actually distinct? To answer this question
we show that any DPM can be formulated as an equivalent CNN (see: Fig-
ure 1, Figure 2). In other words, deformable part models are convolutional
neural networks. Our construction relies on a new network layer, distance
transform pooling, which generalizes max pooling.

DPMs typically operate on a scale-space pyramid of gradient orientation
feature maps (HOG [3]). But we now know that for object detection this
feature representation is suboptimal compared to features computed by deep
convolutional networks [7]. As a second innovation, we replace HOG with
features learned by a fully-convolutional network. This “front-end” network
generates a pyramid of deep features, analogous to a HOG feature pyramid.
We call the full model a DeepPyramid DPM.

We experimentally validate DeepPyramid DPMs by measuring object
detection performance on PASCAL VOC. Since traditional DPMs have been
tuned for HOG features over many years, we first analyze the differences be-
tween HOG feature pyramids and deep feature pyramids (see: Figure 3). We
then select a good model structure and train a DeepPyramid DPM that sig-
nificantly outperforms the best HOG-based DPMs. While we don’t expect
our approach to outperform a fine-tuned R-CNN detector [7], we do find
that it slightly outperforms a comparable R-CNN (specifically, an R-CNN
on the same conv5 features, without fine-tuning), while running about 20x
faster (0.6s vs. 12s per image).

Our experiments also shed some light the relative merits of region-based
detection methods, such as R-CNN, and sliding-window methods like DPM.
We find that region proposals and sliding windows are complementary ap-
proaches that will likely benefit each other if used in an ensemble. This
makes sense; some object classes are easy to segment (e.g., cats) while oth-
ers are difficult (e.g., bottles, people).

Interpreted more generally, this paper shows that sliding-window detec-
tors on deep feature pyramids significantly outperform equivalent models on
HOG. While not surprising, the implementation details are crucial and chal-
lenging to pin down. As a result, HOG-based detectors are still used in a
wide range of systems, such as recent hybrid deep/conventional approaches
[2], and especially where region-based methods are ill-suited (poselets [1]
being a prime example). We therefore believe that the results presented in
this paper will be of broad practical interest to the visual recognition com-
munity. An open-source implementation will be made available on the first
author’s website, which will allow researchers to easily build on our work.
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Figure 1: CNN equivalent of a single-component DPM.
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Figure 2: Multi-component DPMs are implemented by maxout units.
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Figure 3: HOG versus conv5 feature pyramids. In contrast to HOG features,
conv5 features have sparse activations in position and scale, much like part
detectors. Each conv5 pyramid shows 1 of 256 feature channels.
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