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Although a lot of impressive attribute learning approaches have been pro-
posed in the recent decade, there still remain two problems unsolved in at-
tribute learning [1]. The first issue is the consideration of the correlations
among attributes and the second one is the exploitation of side information
during attribute learning. In this paper, we present a novel attribute learning
framework named Hypergraph-based Attribute Predictor (HAP) for address-
ing both of these two issues.

In HAP, a hypergraph is leveraged to depict the attribute relations among
samples in which each hyperedge represents an attribute relation. Then, the
attribute prediction problem can be translated as a supervised regularized
hypergraph cut issue where its hypergraph cuts are deemed as the attribute
predictions of samples. Finally, the attribute predictors can be jointly ob-
tained by learning the mappings from the sample space to the attribute pre-
diction space (the space of the learned hypergraph cuts). The processes
details of HAP is summarized in Fig 1.

HAP Model: In HAP, a hypergraph G(V,E) is defined for depicting the at-
tribute relations of samples where V and E are the vertex set and hyperedge
set respectively. In this hypergraph, the vertex v; € V is corresponding to
the sample x; € X and each hyperedge is defined as a vertex set that shares
the same attribute label. Then, we translate the attribute prediction issue as
a regularized hypergraph cut issueand consider a collection of hypergraph
cuts F' as the attribute predictions of samples [4]. In such way, the optimal
hypergraph cuts should not only preserve the structures of hyperedges (at-
tribute relations) but also minimize the prediction errors of the train samples
during hypergraph partition,

F = argn}vin{Q(F7 G)+AA(F,Y)}

= Te(F'LyF)+A|IF Y|P, 6))
where Q(F,G) is the attribute relation loss function, A(F,Y) is the attribute
prediction loss function and A is a positive parameter to reconcile these two
losses. In this formula, Ly is the Laplacian matrix of the defined hypergraph
G and Y is the collection of attribute labels.

Now, the problem of seeking attribute predictors can be transformed
as a problem that finding a mapping B from the sample feature space to
the attribute predictions space (constituted by the learned hypergraph cus),
i.e. F = XTB. We can introduce a Ly-norm constraint to B for avoiding the
overfitting and then reformulate the Equation 1 as the following optimization
problem to obtain the optimal B

B= argmgn(Tr(BTXLHXTB) +AIXTB=Y [P +n|BI>). (2

where 1) is a positive regularization parameter.

CSHAP Model: By considering the regularized hypergraph cut issue as a
multi-graph cut issue, we extend the HAP model to exploit the classification
information during attribute learning,

B= argmBin(Tr(BTXLWXTB) +A|IXTB=Y|)> +1|B|]*) 3)
where Ly = Ly + YL is the combination of the Laplacian matrices of the
hypergraph, which encodes the attribute relations of samples, and a graph
or hypergraph which encodes the class relations of samples. We name this
new HAP model Class Specific HAP (CSHAP). The idea of CSHAP can be
easily generalized for incorporating the other side information within HAP
model just via accumulating more laplacian matrices of the hypergraphs or
graphs which encode different side information.

Kernelization: The mapping from the feature space to the attribute predic-
tion space may be not linear. This motivated us to present the kernelization
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Figure 1: The overview of HAP.

for our method. According to the generalized representer theorem [3], the
sample matrix X can be represented as a kernel matrix Ky via giving a kernel
function (-, -). The kernelized attribute predictors B are the mappings from
the kernelized feature space to attribute prediction space, i.e. F' = K; B. In
such case, the objective functions of the Kernelized HAP (KHAP) and K-
ernerlized CSHAP (KCSHAP) can be denoted as follows

B = argmin{Tr(B" KxLyKxB) + A||KxB~ Y| +n||B|*} @
where Ly is equal to Ly in the KHAP case and Ly in the KCSHAP case.
The models in Equation 2, 3 and 4 all can be easily solved as a regular-
ized least square issue. At test time, given a unlabeled sample z;, its attribute
predictions can be achieved by projecting the sample into the subspace s-

panned by B, p; = sign(z,TB) in linear case or p; = sign (21};1 k(z,‘,xj)TB)
in kernelized case, where sign(-) returns the sign of each element of a vector
and p; is a row vector encoded the predicted attributes of i-th sample.

Experimental Results: We experimented with three datasets: AWA, CUB
and USAA. The results on attribute prediction, Zero/N-shot Learning, and
categorization consistently validate the effectiveness of the proposed frame-
work. For example, we record the attribute prediction accuracies of different
attribute learning methods in Table 1. From these results, it is not hard to
see that our approaches consistently outperform the compared methods.

The implementation details of our models and other experimental anal-
ysis can be referred to the full version of the paper at the Computer Vision
Foundation webpage.

Table 1: Average Attribute Prediction Accuracies (in AUC).

Dataset Prediction Accuracies (%)
HAP CSHAP,; CSHAP; DAP [2] TAP [2] ALE [1]
AWA 74.0 74.0 74.3 72.8/63.0F  72.1/73.8" 65.7
USAA 61.7+1.3 62.2+0.8 61.8+1.8 — — —
CUB 68.5 68.7 68.5 61.8 — 60.3
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