
Deep Transfer Metric Learning

Junlin Hu1, Jiwen Lu2, Yap-Peng Tan1

1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore.

How to design a good similarity function plays an important role in many
visual recognition tasks. Recent advances have shown that learning a dis-
tance metric directly from a set of training examples can usually achieve
proposing performance than hand-crafted distance metrics [2, 3]. While
many metric learning algorithms have been presented in recent years, there
are still two shortcomings: 1) most of them usually seek a single linear dis-
tance to transform sample into a linear feature space, so that the nonlinear
relationship of samples cannot be well exploited. Even if the kernel trick
can be employed to addressed the nonlinearity issue, these methods still
suffer from the scalability problem because they cannot obtain the explicit
nonlinear mapping functions; 2) most of them assume that the training and
test samples are captured in similar scenarios so that their distributions are
assumed to be the same. This assumption doesn’t hold in many real visual
recognition applications, when samples are captured across datasets.

We propose a deep transfer metric learning (DTML) method for cross-
dataset visual recognition. Our method learns a set of hierarchical nonlinear
transformations by transferring discriminative knowledge from the labeled
source domain to the unlabeled target domain, under which the inter-class
variations are maximized and the intra-class variations are minimized, and
the distribution divergence between the source domain and the target do-
main at the top layer of the network is minimized, simultaneously. Figure 1
illustrates the basic idea of the proposed method.

Deep Metric Learning. We construct a deep neural network to compute
the representations of each sample x. Assume there are M+1 layers of the
network and p(m) units in the mth layer, where m = 1,2, · · · ,M. The output
of x at the mth layer is computed as:

f (m)(x) = h(m) = ϕ

(
W(m)h(m−1)+b(m)

)
∈ Rp(m)

, (1)

where W(m) ∈ Rp(m)×p(m−1)
and b(m) ∈ Rp(m)

are the weight matrix and bias
of the parameters in this layer; and ϕ is a nonlinear activation function which
operates component-wisely, e.g., tanh or sigmoid functions. The nonlinear
mapping f (m) : Rd 7→ Rp(m)

is a function parameterized by {W(i)}m
i=1 and

{b(i)}m
i=1. For the first layer, we assume h(0) = x.

For each pair of samples xi and x j, they can be finally represented as
f (m)(xi) and f (m)(x j) at the mth layer of our designed network, and their
distance metric can be measured by computing the squared Euclidean dis-
tance between f (m)(xi) and f (m)(x j) at the mth layer:

d2
f (m)(xi,x j) =

∥∥∥ f (m)(xi)− f (m)(x j)
∥∥∥2

2
. (2)

Following the graph embedding framework, we enforce the marginal
fisher analysis criterion [4] on the output of all training samples at the top
layer and formulate a strongly-supervised deep metric learning method:

min
f (M)

J = S(M)
c −α S(M)

b + γ ∑
M
m=1

(∥∥W(m)
∥∥2

F +
∥∥b(m)

∥∥2
2

)
, (3)

where α (α > 0) is a free parameter which balances the important between
intra-class compactness and interclass separability; ‖Z‖F denotes the Frobe-
nius norm of the matrix Z; γ (γ > 0) is a tunable positive regularization pa-
rameter; S(m)

c and S(m)
b define the intra-class compactness and the interclass

separability, which are defined as follows:

S(m)
c =

1
Nk1

∑
N
i=1 ∑

N
j=1 Pi j d2

f (m)(xi,x j), (4)

S(m)
b =

1
Nk2

∑
N
i=1 ∑

N
j=1 Qi j d2

f (m)(xi,x j), (5)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Source domain

Target domain

Source and target data

in transformed subspace

DTML

Figure 1: The basic idea of the proposed DTML method. For each sample
in the training sets from the source domain and the target domain, we pass
it to the developed deep neural network. We enforce two constraints on
the outputs of all training samples at the top of the network: 1) the inter-
class variations are maximized and the intra-class variations are minimized,
and 2) the distribution divergence between the source domain and the target
domain at the top layer of the network is minimized.

where Pi j is set as one if x j is one of k1-intra-class nearest neighbors of xi,
and zero otherwise; and Qi j is set as one if x j is one of k2-interclass nearest
neighbors of xi, and zero otherwise.

Deep Transfer Metric Learning. Given target domain data Xt and source
domain data Xs, their probability distributions are usually different in the o-
riginal feature space when they are captured from different datasets. To
reduce the distribution difference, we apply the Maximum Mean Discrep-
ancy (MMD) criterion [1] to measure their distribution difference at the mth
layer, which is defined as as follows:

D(m)
ts (Xt ,Xs) =

∥∥∥∥ 1
Nt

∑
Nt

i=1 f (m)(xti)−
1

Ns
∑

Ns

i=1 f (m)(xsi)

∥∥∥∥2

2
. (6)

By combining (3) and (6), we formulate DTML as the following opti-
mization problem:

min
f (M)

J = S(M)
c −α S(M)

b +β D(M)
ts (Xt ,Xs)

+ γ ∑
M
m=1

(∥∥W(m)
∥∥2

F +
∥∥b(m)

∥∥2
2

)
, (7)

where β is a regularization parameter. We employ the stochastic gradient
descent algorithm to obtain W(m) and b(m).

[1] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J.
Smola. A kernel method for the two-sample-problem. In Proc. NIPS,
pages 513–520, 2006.

[2] K. Q. Weinberger and L. K. Saul. Distance metric learning for large
margin nearest neighbor classification. JMLR, 10:207–244, 2009.

[3] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell. Distance metric
learning with application to clustering with side-information. In Proc.
NIPS, pages 505–512, 2002.

[4] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph em-
bedding and extensions: A general framework for dimensionality re-
duction. IEEE T-PAMI, 29(1):40–51, 2007.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

