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Cellular Automata is a dynamic system with simple construction but

complex self-organizing behaviour [5]. The model consists of a lattice of

cells with discrete states, which evolve in discrete time steps according to

definite rules. Each cell’s next state will be determined by its current state

and the states of its nearest neighbors. In this paper, we introduce Cellular

Automata as a propagation mechanism to intuitively detect the salient ob-

ject. In addition, considering that some effective algorithms have been pro-

posed in the Bayesian framework [4], we also combine Cellular Automata

with Bayesian theory to integrate multiple saliency maps.

Firstly, we apply the K-means algorithm to classify the image border

into K different clusters. Based on different boundary clusters, we can con-

struct global color distinction maps and spacial distance maps as:
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where pk (k = 1,2, · · · ,K) is the number of boundary superpixels belong-

ing to cluster k, ‖ ccci,ccc j ‖ is the Euclidean Distance between the super-

pixel i and j in CIE LAB color space, rrri and rrr j are the coordinates of

the superpixel i and j. Then we can construct the background-based map
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In Single-layer Cellular Automata (SCA), each cell denotes a superpixel

generated by the SLIC algorithm. We use the saliency value of each super-

pixel as its state. A cell’s newly defined neighbors include cells surrounding

it as well as sharing common boundaries with its adjacent cells. It is intu-

itive to accept that neighbors with more similar color features have a greater

influence on the cell’s next state. The similarity of any pair of superpixels

is measured by a defined distance in CIE LAB color space. We construct

impact factor matrix FFF = [ fi j]N×N by defining the impact factor fi j of su-

perpixel i to j as:
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where ‖ ccciii,ccc jjj ‖ denotes the Euclidean Distance in CIE LAB color space

between the superpixel i and j, NB(i) is the set of neighbors of cell i. We do

a row-normalization to FFF to achieve FFF∗.

Considering that each cell’s next state is determined by its current state

as well as its neighbors’, we need to balance the importance of the two

decisive factors. For one thing, if a superpixel is quite different from all

neighbors in color space, its next state will be primarily relied on itself. For

the other, if a cell is similar to neighbors, it is more likely to be assimilated

by the local environment. To this end, we build a coherence matrix CCC∗ =
diag{c∗1,c

∗
2, · · · ,c

∗
N} by the formulation as:

c∗i = a ·
ci −min(c j)

max(c j)−min(c j)
+b (5)

where ci =
1

max( fi j)
and j = 1,2, · · · ,N.

In Single-layer Cellular Automata, all cells update their states simulta-

neously according to the updating rule. In this paper, we define the syn-

chronous updating rule f : SNB → S as follows:

SSSt+1 =CCC∗ ·SSSt +(III −CCC∗) ·FFF∗ ·SSSt (6)

where III is the identity matrix, CCC∗ and FFF∗ are coherence matrix and impact

factor matrix respectively. We use our background-based map and several

classic methods as the prior maps St=0 and refresh them according to the
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Figure 1: Comparison of different methods and their optimized version after

parallel evolutions. (a) The first row are input images. The second row are

the ground truth. (b)-(e) The first row are the original results of different

methods. From left to right: our background-based maps, saliency maps

generated by FT [1], CA [2], IT [3]. The second row are their optimized

results via Single-layer Cellular Automata.

synchronous updating rule. The optimized results via SCA are shown in

Figure 1. We can see that even though the original results are not satisfying,

all of them are greatly improved to a similar accuracy level after evolution.

That means our method is independent to prior maps.

In order to take advantage of the superiority of different saliency detec-

tion methods, we propose an effective algorithm named Multi-layer Cellular

Automata (MCA) to incorporate M saliency maps generated by M state-

of-the-art methods. In MCA, each cell represents a pixel and pixels with

the same coordinates in different maps are neighbors. We define the syn-

chronous updating rule f : SM−1 → S under the Bayesian framework as:
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where SSSt
m represents the saliency value of all cells on the m-th map at time t

and l(SSSt
m) = ln(

SSSt
m

1−SSSt
m

), γm denotes the adaptive threshold of the m-th salien-

cy map. If the pixel i belongs to the foreground, the probability that one of

its neighboring pixel j is binarized as foreground is denoted as λ . Intuitive-

ly, if a pixel observes that its neighbors are binarized as foreground, it ought

to increase its saliency value. Therefore, Eqn 7 requires λ > 0.5 and then

ln( λ
1−λ

)> 0.

The iteration numbers of Single-layer Cellular Automata and Multi-

layer Cellular Automata are determined respectively by the convergence

time of the dynamic systems. The saliency map will not change any more

once the system achieves the stability. Extensive experiments on six public

datasets demonstrate that the proposed algorithm outperforms state-of-the-

art methods.
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