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Recently, learning based hashing techniques have attracted broad research

interests due to the resulting efficient storage and retrieval of images, videos,

documents, etc. However, a major difficulty of learning to hash lies in han-

dling the discrete constraints imposed on the needed hash codes. In general,

the discrete constraints imposed on the binary codes that the target hash

functions generate lead to mixed-integer optimization problems—which is

generally NP hard. To simplify the optimization involved in a binary code

learning procedure, most of the aforementioned methods choose to first

solve a relaxed problem through directly discarding the discrete constraints,

and then threshold the continuous outputs to be binary. This greatly simpli-

fies the optimization but, unfortunately, the approximated solution is typi-

cally of low quality and often makes the final hash functions less effective,

possibly due to the accumulated quantization errors. This is especially the

case when long-length codes are needed.

Directly learning the binary codes without relaxations would be pre-

ferred if (and only if) a tractable and scalable solver is available. The impor-

tance of discrete optimization in hashing has been rarely taken into account

by most existing hashing methods. Iterative Quantization (ITQ) [1] is an

effective approach to decrease the quantization distortion by applying an

orthogonal rotation on the transformed data. A limitation of ITQ is that

it learns the orthogonal rotations on the pre-computed mappings (e.g., us-

ing PCA or CCA). The separate learning procedure means that ITQ usually

achieves a suboptimal solution.

In this work, we propose a new supervised hashing framework, which

aims to directly generate the binary hash codes, effectively and efficiently.

To leverage the supervised information, we formulate the hashing problem

in the framework of linear classification, where the learned binary codes

(nonlinear feature vectors) are expected to be optimal for linear classifica-

tion. More specifically, the learned binary codes can be viewed as nonlinear

feature vectors of the original data. The label information is exploited such

that these binary feature vectors are easy to be classified. Similar to the dis-

crete boosting learning at the high level, we transform the original data into

a nonlinear binary space, and then classify the original data in this binary

space.

To implement this idea, we propose a joint optimization problem which

jointly learns the binary embeddings and the linear classifier. Suppose that

we have n samples X = {xi}n
i=1. We aim to learn a set of binary codes B =

{bi}n
i=1 ∈ {−1,1}L×n to well preserve their semantic similarities, where the

ith column bi is the L-bits binary codes for xi. We adopt following multi-

class classification formulation y=G(b) =W�b= [w�
1 b, · · · ,w�

Cb]� where

wk ∈ RL×1, k = 1, · · · ,C is the classification vector for class k and y is the

label vector, of which the maximum item indicates the assigned class of x.

We then formulate the hashing problem as follows,

min
B,W,F

n

∑
i=1

L(yi,W�bi)+λ ||W||2 +ν
n

∑
i=1

||bi −F(xi)||2 (1)

s.t. bi ∈ {−1,1}L.

Here L(·) is the loss function. In this formulation, the hash functions F(xi)
are simultaneously learned to fit the generated binary bits. To better capture

the nonlinear structure of the data, the hash functions are learned in a ker-

nel space. The overall optimization problem is then solved in an iterative

fashion with three corresponding sub-problems: each sub-problem solves

for one variable while keeping other two variables fixed. With the �2 loss, it

is trivial to solve for W and F . The most important B sub-problem writes

min
B

||W�B||2 −2Tr(B�Q) (2)

s.t. B ∈ {−1,1}L×n.
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Table 1: Comparative results of our method with discrete constraints or re-

laxed ones.
Constraint 32 bits 64 bits 96 bits

Precision
Discrete 0.5090 0.4229 0.3515

Relaxed 0.4718 0.3354 0.1685

MAP
Discrete 0.4307 0.4555 0.4582

Relaxed 0.3777 0.4150 0.4244

Table 2: Comparison with state-of-the-arts on CIFAR with 64 bits.

Method Precision MAP Training time Test time

BRE 0.1299 0.1156 12042.0 6.4e-5

MLH 0.2251 0.1730 2297.5 3.2e-5

KSH 0.1656 0.3822 2625.0 3.1e-6

SSH 0.2860 0.2091 96.9 3.6e-6

CCA-ITQ 0.3524 0.3379 4.3 1.7e-6

FastHash 0.1880 0.4187 1340.7 7.1e-4

SDH 0.4229 0.4555 62.6 2.6e-6

where Q = WY+νF(X) and Tr(·) is the trace norm.

We choose to learn the binary codes B by the discrete cyclic coordinate
descent (DCC) method. In other words, We learn B bit by bit. Let z� be the

lth row of B, l = 1, · · · ,L and B′ the matrix of B excluding z. Then z is one

bit for all n samples. Similarly, let q� be the lth row of Q, Q′ the matrix of

Q excluding q, v� the lth row of W and W′ the matrix of W excluding v.

Then we have w.r.t. z:

min
z

(v�W′�B′ −q�)z (3)

s.t. z ∈ {−1,1}n.

This problem has the optimal solution

z = sgn(q−B′�W′v). (4)

By carefully choosing loss functions of the classifier, the DCC method

produces the optimal hash bits in a closed form, which consequently makes

the entire optimization procedure very efficient. Therefore, the proposed

binary code learning method can easily deal with large-scale datasets. We

name the proposed supervised hashing method employing discrete cyclic

coordinate as Supervised Discrete Hashing (SDH).

Discrete or Not? To see how much the discrete optimization will benefit

the hash code learning, we perform a comparison of our hash formulation (1)

with or without the discrete constraints. The comparative results on CIFAR

are shown in Table 1. As can be seen, our discrete hashing framework SDH

consistently yields better hash codes than the relaxed one by removing the

sign function. In particular for precision, the performance gaps between

these two methods are increased with longer hash bits.

Conclusion By the cyclic coordinate descent method, the proposed SDH

attained a high-quality discrete solution with a very low computational cost.

The efficacy of SDH is validated by the superior results over several state-

of-the-art hashing methods (see Table 2). Refer to [2] for full details of

this work. The code for SDH is available at https://github.com/
bd622/DiscretHashing.
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