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Abstract

Dense semantic 3D reconstruction is typically formu-
lated as a discrete or continuous problem over label assign-
ments in a voxel grid, combining semantic and depth like-
lihoods in a Markov Random Field framework. The depth
and semantic information is incorporated as a unary po-
tential, smoothed by a pairwise regularizer. However, mod-
elling likelihoods as a unary potential does not model the
problem correctly leading to various undesirable visibility
artifacts.

We propose to formulate an optimization problem that di-
rectly optimizes the reprojection error of the 3D model with
respect to the image estimates, which corresponds to the op-
timization over rays, where the cost function depends on the
semantic class and depth of the first occupied voxel along
the ray. The 2-label formulation is made feasible by trans-
forming it into a graph-representable form under QPBO re-
laxation, solvable using graph cut. The multi-label prob-
lem is solved by applying α-expansion using the same re-
laxation in each expansion move. Our method was indeed
shown to be feasible in practice, running comparably fast
to the competing methods, while not suffering from ray po-
tential approximation artifacts.

1. Introduction

In this paper we are studying the problem of jointly infer-
ring dense 3D geometry and semantic labels from multiple
images, formulated as an optimization over rays. The prob-
lem of dense 3D reconstruction from images and semantic
segmentation is up to date still a hard problem. A particu-
larly powerful approach to the problem of dense 3D recon-
struction from images is to pose it as a volumetric labeling
problem. The volume is segmented into occupied and free
space (the inside and the outside of an object) and the sur-
face is extracted as the boundary in between. Traditionally,
the data costs are extracted from the input images either di-
rectly by computing matching scores per voxel or by first
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computing depth maps and deriving a per pixel unary po-
tential based on the depth maps. In both cases after the
image data has been converted to a per voxel unary term the
input images are discarded. Unary terms, approximately
modelling the likelihood the depth for a given pixel agrees
with the estimate, typically encourage voxels in an inter-
val just before the matched 3D point to take the free-space
label and voxels in an interval right after the matched 3D
point to take the foreground label. However, this assump-
tion does not hold in general. The interval right behind the
corner of an object does not necessarily have to belong to
foreground. Failures due to this problem lead to blowing up
corners, roofs of buildings or thin objects. The problem can
be partly fixed by decreasing the length of an interval, how-
ever, in that case in presence of noise the matched neigh-
bouring points start to compete against each other. Another
problem of unary approximation is that the unary potential
does not model, whether the voxel is visible. If there is a
hole in the wall and a matched object behind, there is no
penalty associated with a data term for closing the hole,
which might get filled in by regularization. This problem
can also be partially resolved by penalizing foreground for
all pixels in front of the matched voxel, however such solu-
tion is not robust to outliers. The standard approach is also
not suitable for incorporating multiple candidate matches
along the viewing ray in the optimization together.

We propose to formulate an optimization problem which
measures the data fidelity directly in image space while still
having all the benefits of a volumetric representation. The
main idea is to use a volumetric representation, but describe
the data cost as a potential over rays. Traversing along a
ray from the camera center we observe free space until we
first hit an occupied voxel of a certain semantic class and
we cannot assume anything about the unobserved space be-
hind. The potential we introduce correctly assigns for each
ray the cost, based on the depth and semantic class of the
first occupied voxel along the ray. The key to make such
a formulation feasible is the transformation of the potential
into a graph-representable form under QPBO relaxation [2],
solvable using graphcut-based methods. Our proposed op-
timization method can be directly used also for multi-label



problems by applying α-expansion [3] with QPBO used to
calculate each expansion move. Our method runs compara-
bly fast to the competing methods, while not suffering from
ray potentials approximation artifacts.

1.1. Related Work

Generating dense 3D models out of multiple images is
a well-studied problem in computer vision. An overview
is given in [21]. Posing the problem of dense 3D recon-
struction as a volumetric segmentation was first proposed
in [7]. The initial formulation does not use any regular-
ization. However, often the data is contaminated by noise
and strong assumptions about the smoothness have to be
made. Regularizing the surface by penalizing the surface
area has been proposed in the discrete graph cut formula-
tion [16, 25] and also as continuous convex optimization
formulation [28]. The solution space is not restricted to
regular voxel grids. [27] uses a thetrahedronization of the
space. The data cost is formulated as a pairwise potential
along viewing rays. They put a unary prior for a tetrahedron
right behind the initial estimated depth match and a penalty
for every cut before it. The photo-consistency of faces is
used as a weight for the cost to cut a ray with a given face.
A Markov Random Field (MRF) formulation over rays has
been proposed to estimate surface geometry and appearance
jointly [17, 18]. The energy is formulated as a reprojection
error of the reconstructed voxels to the input images, which
jointly estimates voxel occupancy and color. The high qual-
ity refining of approximate mesh has also been formulated
as a reprojection error minimization [26, 8].

The silhouettes of objects in the input image contain im-
portant information about the geometry. They constrain the
solution, such that for every ray passing through the silhou-
ette there must be at least one occupied voxel, and every ray
outside of the silhouette consists of free space voxels only.
This constraint has been used in form of a convex relax-
ation in [6]. [12] proposes an intelligent unary ballooning
visibility term based on the consensus from different views.
In [23], the silhouettes are handled in a two-stage process,
where the initial surface is reprojected into each image and
the interior is heuristically corrected using the sets of er-
roneous pixels, by finding the most photo-consistent vox-
els along the ray. Recently, also approaches which jointly
reason about geometry and semantic labels have been pro-
posed [11]. For volumetric 3D reconstruction in indoor en-
vironments a Conditional Random Field (CRF) model was
proposed in [13]. It includes higher order potentials over
groups of voxels to include priors from 2D object detections
and 3D surface detections in the raw input depth data. Fur-
thermore, potentials over rays are used to enforce visibility
of only one voxel along a ray.

2. Ray Energy Formulation
We are interested in finding the smooth solution, whose

projection into each camera agrees with the depth and se-
mantic observations. Thus, the energy will take the form:

E(x) =
∑
r∈R

ψr(x
r) +

∑
(i,j)∈E

ψp(xi, xj), (1)

where each xi ∈ L is the voxel variable taking a label from
the label set L with a special label lf ∈ L corresponding
to free space; R is the set of rays, ψr(.) is the ray poten-
tial over the set of voxels xr, E is the set of local voxel
neighbourhoods, and ψp(·) is a smoothness enforcing pair-
wise regularizer. Each ray r of length Nr consists of voxels
xri = xri , where i ∈ {0, 1, ..Nr − 1}. The ray potential
takes the cost depending only on the first non-free space
voxel along the ray Kr (if there is any):

Kr =

{
min(i|xri ̸= lf ) if ∃xri ̸= lf

Nr otherwise.
(2)

The ray potential is defined as:

ψr(x
r) = ϕr(K

r, xrKr ), (3)

where xrNr = lf . The costs for each depth and semantic
label ϕr(.) could be arbitrary and typically come from the
corresponding semantic and depth classifiers or measure-
ments.

2.1. Optimization of the 2label Ray Potentials

Let us first consider the two label case. Each variable xi
may take a value from the set {0, 1}, where xi = 0 corre-
sponds to the occupied voxel and xi = 1 corresponds to free
space lf . The ray potential (3) for arbitrary costs could be
non-submodular even for a ray of the length 2 making the
2-label problem NP-hard in general. Thus, we propose a so-
lution using QPBO relaxation [2], where the energy E(x)
is transformed to a submodular energy E(x,x) with addi-
tional variables xi = 1 − xi, and solved by relaxing these
constraints.

In our case, the non-submodular ray potentials are of
larger order than 2. To make our problem solvable using
graph-cut, our goal is to transform these potentials into a
pairwise energy with additional auxiliary variables z, such
that:

ψr(x
r) = min

z
ψq(x

r,xr, z), (4)

where ψq(.) is pairwise submodular. Additionally, to keep
the problem feasible, our goal is to find a transformation,
for which the number of edges in the graph with auxiliary
variables grows at most linearly with length of a ray. We
achieve this goal using these five steps:

1. Polynomial representation of the ray potential,



2. Transformation into higher order submodular potential
using additional variables x,

3. Pairwise graph construction of a higher order submod-
ular potential using auxiliary variables z,

4. Merging variables [20] to get the linear dependency of
the number of edges on length,

5. Transformation into a normal form, symmetric over x
and x, suitable for QPBO [2].

Next we describe in details each one of these steps. The
two-label equivalent of the ray potential takes the form:

ψr(x
r) :=

{
ϕr(min(i|xri = 0)) if ∃xri = 0

ϕr(Nr) otherwise,
(5)

where ϕr(i) := ϕr(i) is the cost taken, if i is the first fore-
ground pixel along the ray, and ϕr(Nr) is the cost for the
whole ray being free space. We would like to transform
this potential into the polynomial representation - the sum
of products:

ψr(x
r) = kr +

Nr−1∑
i=0

cri

i∏
j=0

xrj . (6)

Applying to equation (5), we get ϕr(K) = kr +
∑K−1

i=0 cri ,
thus kr = ϕr(0) and cri = ϕr(i + 1) − ϕr(i), ∀i ∈
{0, ..Nr − 1}.

It is well-known that the product cri
∏i

j=0 x
r
j is submod-

ular only if cri ≤ 0 [9]. For cri > 0 we can transform the
product into submodular function using additional variable
xri = 1− xri as:

cri

i∏
j=0

xrj = cri (1− xri )
i−1∏
j=0

xrj = −crixri
i−1∏
j=0

xrj + cri

i−1∏
j=0

xrj .

(7)
That means, that starting from the last term we can itera-
tively check if cri ≤ 0, and if it is not, we transform the term
using (7) and update cri−1 := cri−1+ c

r
i . The transformation

algorithm is explained in details in Algorithm 1.
Ignoring the constant term we transform the potential

into:

ψr(x
r) =

Nr−1∑
i=0

(
− ari

i∏
j=0

xrj − brix
r
i

i−1∏
j=0

xrj

)
. (8)

Each product in the sum is submodular and graph-
representable using one auxiliary variable zi ∈ {0, 1}. The
standard pairwise graph constructions [9] for a negative
product terms are:

− ari

i∏
j=0

xrj = ari min
zi

(
− zi +

i∑
j=0

zi(1− xrj)

)
(9)

Algorithm 1 Transformation into submodular potential.
Input: cr, Nr

Output: ar, br

i = Nr − 1;
while i ≥ 0 do

if cri ≤ 0 then
ari = −cri , bri = 0

else
ari = 0, bri = cri
if i > 0 then cri−1 = cri−1 + cri

end if
i = i− 1

end while

−brixri
i−1∏
j=0

xrj = bri min
z′
i

(
− z′i + z′i(1− xri )

+
i−1∑
j=0

z′i(1− xrj)

)
, (10)

however, such constructions for each term in the sum would
lead to a quadratic number of edges per ray. Instead, we
first build a more complex graph constructions with (i +

1) auxiliary variables zi ∈ {0, 1}i+1 and z′
i ∈ {0, 1}i+1

respectively with the foresight, that this will lead to a graph
construction with linear growth of the number of edges:

−ari
i∏

j=0

xrj = ari min
zi

(
− zii + zii(1− xri ) (11)

+

i−1∑
j=0

(zij+1(1− zij) + zij(1− xrj))

)

−brixri
i−1∏
j=0

xrj = bri min
z′

i

(
− z′

i
i + z′

i
i(1− xri ) (12)

+
i−1∑
j=0

(z′
i
j+1(1− z′ji ) + z′

i
j(1− xrj))

)
,

where the (one of the) optimal assignment for auxiliary vari-
ables is:

∀j ∈ {0, .., i} : zij =

j∏
k=0

xrk (13)

z′
i
i = xri

i−1∏
k=0

xrk (14)

∀j ∈ {0, .., i− 1} : z′
i
j =

j∏
k=0

xrk (15)



Both equations are structurally the same, so we just prove
(11). It can be easily checked, that given the assignments of
auxiliary variables (13) every term is always going to be 0
except −zii , that is by definition (13) equal to the negative
product of all xr on the left side of (11). Next we have to
show, that if xr ̸= 1, there is no assignment of auxiliary
variables leading to a negative cost. Let us try to construct
such xr. The only term, that could be potentially negative
is −zii , thus zii = 1. However, to keep the whole expression
negative, the remaining terms must be 0 and thus:

(zij+1(1− zij) = 0) =⇒ ((zij+1 = 1) =⇒ (zij = 1)) (16)

(zij(1− xri ) = 0) =⇒ ((zij = 1) =⇒ (xrj = 1)). (17)

(16) implies zi = 1 and then (17) implies xr = 1. Thus,
the assignment (13) is always optimal and (11) holds. There
could be more possible optimal assignments, however for
the next step we only need this one to exist. The alterna-
tive graph construction leads to much more complex graphs
than the standard one, however, we can decrease its growth
in terms of edges by applying the merging theorem [20].
The theorem states, that if for every assignment of input
variables x there exists at least one assignment of two or
more auxiliary variables zi, ..zj , such that zi = .. = zj ,
these variables can be replaced by a single variable without
altering the cost for any assignment of x. In our graph con-
structions we can see (13), that the value zij =

∏j
k=0 x

r
k is

independent on i, and thus:

∀i ∈ {0, .., Nr − 1}, ∀j, k ∈ {0, .., i} : zji = zki . (18)

Furthermore, based on (15):

∀i ∈ {0, .., Nr − 1}, ∀j, k ∈ {0, .., i− 1} : z′
j
i = zki . (19)

After removing the unnecessary top index zji = zi and
z′

i
i = z′i, and summing up all corresponding weights, the

resulting pairwise construction takes the form:

ψr(x
r) = min

z,z′

(
Nr−1∑
i=0

(
− ari zi − bri z

′
i (20)

+ fri (1− zi)x
r
i + bri (1− zi)x

r
i

)
+

Nr−2∑
i=1

(
(fri+1(1− zi+1)zi + bri (1− z′i+1)zi

))
,

where fri =
∑Nr−1

i arj+
∑Nr−1

i+1 brj . Unlike standard graph
construction, this one leads to a number of edges growing
at most linearly with the length of the ray. The process of
merging is visually depicted in Figure 1.

Finally, the potential is converted into a symmetric nor-

mal form, suitable for QPBO [2] as:

ψr(x
r) =

1

2

(
min
z
ψr(x,x, z)

+ min
z
ψr(1− x,1− x,1− z)

)
, (21)

leading to the symmetric quadratic representation:

ψr(x
r) =

1

2
min

z,z′,z,z′

(Nr−1∑
i=0

(
− ari zi − bri z

′
i (22)

+ fri (1− zi)x
r
i + bri (1− zi)x

r
i

)
+

Nr−2∑
i=1

(
fri+1(1− zi+1)zi + bri (1− z′i+1)zi

)

+

Nr−1∑
i=0

(
− ari (1− zi)− bri (1− z′i)

+ fri zi(1− xri ) + bri zi(1− xri )

)
+

Nr−2∑
i=1

(
fri+1zi+1(1− zi) + bri z

′
i+1(1− zi)

))
.

To remove fractions, we multiply all potentials by a factor
of 2. The resulting graph construction is shown in Figure 2.
Our method inherits the properties of the standard QPBO
for pairwise graphs [2]. The set of variables, for which
xi = 1 − xi, is the part of the globally optimal solution.
The remaining variables can be labelled using Iterated Con-
ditional Modes (ICM) [1] iteratively per variable.

2.2. Optimization of the Multilabel Ray Potentials

To solve the multi-label case, we adapt the α-expansion
algorithm. The moves proposed by α-expansion [3], are en-
coded by a binary transformation vector t, which encodes,
how should the variable xi change after the move. There
are two distinct cases - expansion move of the free space
label lf and expansion move of any other foreground label
l ̸= lf .

For the free space label we define the transformation
function as:

Tlf (xi, ti) =

{
lf if ti = 1
xi if ti = 0

(23)

Next we have to find the 2-label projection of multi-label
ray potential (3) under this transformation function Tlf (.).
Let s(r) be the ordered set of variables in a ray r, which
before the move do not take the label lf : s(r) = {ri|xri ̸=
lf}. After the move, the first occupied voxel of r will be the
first occupied voxel of s(r), and thus the ray potential (3)



Figure 1. The process of merging for ray of the length 3. Because the optimal assignment of auxiliary variables is the same for every
construction, the variables can be merged and thus we can build the final graph just by summing up corresponding edges in each one of
these 6 graphs. The weights in the final graph will be f0 = a2 + a1 + a0 + b2 + b1, f1 = a2 + a1 + b2 and f2 = a2.

projects into 2 labels as:

ψr(t
r) =

{
ϕr(K(t), x

s(r)
K(t)) if ∃ts(r)i = 0

ϕr(Nr, lf ) otherwise,
(24)

where K(t) = min(i ∈ s(r)|ts(r)i = 0). The projec-
tion takes the form of (5), and thus can be solved using the
graph-construction (22).

For l ̸= lf we define the transformation function as:

Tl(xi, ti) =

{
l if ti = 0
xi if ti = 1

(25)

After the move the first non-free space label could be only in
front of the first non-free space label of the current solution.
Let s′(r) be the ordered set of variables in front of current
first occupied voxel Kr : s′(r) = {ri|i ≤ Kr} (including
Kr if Kr exists). The ray potential will project into:

ψr(t
r) =

{
ϕr(K(t), l) if ∃ts

′(r)
i = 0

ϕr(Ns′(r), x
s′(r)
Kr

) otherwise.
(26)

The projection also takes the form of (5) and can be solved
using (22).

3. Implementation Details
As an input our method uses semantic likelihoods, pre-

dicted by a pixel-wise context-based classifier from [15],
and depth likelihoods obtained by a plane sweep stereo
matching algorithm using zero-mean normalized cross-
correlation. In general the ray costs for a label l take the
form:

ϕr(i, l) =

(
(λsemC(l) + λdepC(d(i))

)
d(i)2, (27)

where C(l) is the semantic cost for label l (or sky for free
space label lf ), C(d(i)) is the cost for depth d(i) of a pixel

i, and λsem and λdep are the weights of both domains. Be-
cause each pixel corresponds to patch in a volume, which
scales quadratically with distance, thus the costs have to
be weighted by a factor of d(i)2 to keep constant ratio be-
tween ray potentials and regularization terms. In theory, our
method allows for optimization over the whole depth cost
volume, however this would require too much memory to
store. In practice, a few top matches (in our case we used at
most 3) for each pixel contain all the relevant information
and all remaining scores are typically random noise. In our
experiments the costs for given depth took the form:

C(d(i)) =

{
wn(−1 +

|d(i)−dn
top|

∆ ) if |d(i)− dntop| ≤ ∆

0 otherwise.
(28)

where wn is the weight of the n-th match with the depth
dntop, calculated as a ratio of confidence scores of the n-
th match with respect to the best one. As a smoothness
enforcing pairwise potential we used the discrete approx-
imation [14] of the continuous anisotropic pairwise regu-
larizer from [11]. To deal with the high resolution of the
3D we use a coarse-to-fine approximation with 3 subdivi-
sion stages. As a graph-cut solver, we eventually used the
IBFS algorithm [10] algorithm, which was typically 5−50×
faster than commonly used Boykov-Kolmogorov [3] algo-
rithm optimized for lattice graphs. The run-time depends
not only on the resolution, but also on the number of rays
sampled. For example for the Castle dataset with 50 million
voxels and 150 million rays the optimization took approxi-
mately 40 minutes on 48 CPU cores, which is comparable
or faster than other methods [11]. To extract mesh out of
voxelized solution we used Marching cubes algorithm [19].
Final models were smoothed using Laplacian smoothing to
reduce discretization artifacts.



Figure 2. The graph construction for ray with 7 voxels. Each vari-
able has at most 3 outgoing edges, thus the total number of them
grows linearly with the length of the ray.

4. Experiments
We tested our algorithm on 6 datasets - South Build-

ing [11], Catania [11], CAB [5], Castle-P30 [24], Provi-
dence [11] and Vienna Opera [5]. The number of images
ranged from 30 for Castle to 271 for Opera. The seman-
tic classifier [15] for 5 classes (building, tree, ground, clut-
ter and sky) was trained on the CamVid [4] and MSRC
datasets [22], with additional training data from [11]. Fig-
ure 3 shows the qualitative results for all datasets. Our
method managed to successfully reconstruct all 3D scenes
with a relatively high precision. Minor problems were
caused by insufficient amount of input data and incorrect
prediction of semantic and depth estimators. The compari-
son of models with the state-of-the-art volumetric 3D recon-
struction algorithm is shown in the Figure 4. Our method
managed to fix systematic reconstruction artifacts, caused
by approximations in the modelling of the true ray likeli-
hoods - thin structures tend to be thickened (see columns,
roof or tree trunk in the South Building datasets) or open-
ings in the wall (such as arches or doors) undesirably closed,
because there is no penalty associated with it.

5. Conclusion
In this paper we proposed feasible optimization method

for volumetric 3D reconstruction by minimization of repro-
jection error. Unlike several state-of-the-art methods, our
algorithm does not suffer from the systematic errors due
to the approximations of corresponding ray potentials. We
showed that a direct optimization of the higher order po-
tentials by transformation into pairwise graph under QPBO

relaxation is indeed feasible in practice even for high reso-
lution models. Further work will focus on principled incor-
poration of other geometric cues in the optimization frame-
work, such as estimated surface normals or planarity enforc-
ing potentials. Another direction would be to investigate
the possibility of incorporating reprojection-minimizing ray
potentials into other frameworks such as in continuous or
mesh-based formulations.
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