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Abstract

Sharing information between multiple tasks enables al-
gorithms to achieve good generalization performance even
from small amounts of training data. However, in a realistic
scenario of multi-task learning not all tasks are equally re-
lated to each other, hence it could be advantageous to trans-
fer information only between the most related tasks.

In this work we propose an approach that processes mul-
tiple tasks in a sequence with sharing between subsequent
tasks instead of solving all tasks jointly. Subsequently, we
address the question of curriculum learning of tasks, i.e.
finding the best order of tasks to be learned. Our approach
is based on a generalization bound criterion for choosing
the task order that optimizes the average expected classi-
fication performance over all tasks. Our experimental re-
sults show that learning multiple related tasks sequentially
can be more effective than learning them jointly, the order
in which tasks are being solved affects the overall perfor-
mance, and that our model is able to automatically discover
a favourable order of tasks.

1. Introduction
Multi-task learning [6] studies the problem of solving

several prediction tasks. While traditional machine learn-
ing algorithms can be applied to solve each task indepen-
dently, they usually need significant amounts of labelled
data to achieve generalization of reasonable quality. How-
ever, in many cases it is expensive and time consuming to
annotate large amounts of data, especially in computer vi-
sion applications such as object categorization. An alter-
native approach is to share information between several re-
lated learning tasks and this has been shown experimentally
to allow better generalization from fewer training points per
task [26].

In this work we focus on the parameter transfer approach
to multi-task learning that rests on the idea that models cor-
responding to related tasks are similar to each other in terms
of their parameter representations. We concentrate on the
case of linear predictors and assume that similarity between
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Figure 1. Schematic illustration of the proposed multi-task learn-
ing approach. If each task is related to some other task but not
equally much to all others, learning tasks in a sequence (blue ar-
rows) can be beneficial to classical multi-task learning based on
sharing information from a single prototype (green arrows).

the models is measured by the Euclidean distance between
the corresponding weight vectors [35]. In a multi-task set-
ting this idea was introduced by Evgeniou and Pontil in [9].
There the authors propose an SVM-based algorithm that en-
forces the weight vectors corresponding to different tasks
to lie close to some common prototype, and they show its
effectiveness on several datasets. However, this algorithm
treats all the tasks symmetrically, which might not be opti-
mal in more realistic scenarios. There might be some outlier
tasks or groups of tasks such that there is no similarity be-
tween the tasks from different groups. Hence, more flexible
models are needed that are able to exploit the structure un-
derlying tasks relations and avoid negative consequences of
transferring information between unrelated tasks.

The idea of regularizing by Euclidean distance between
the weight vectors of different tasks is also commonly used
in domain adaptation scenario where the learner has access
to two or more prediction tasks but is interested in perform-
ing well only on one of them. All other tasks serve only
as sources of additional information. This setup has been
shown to lead to effective algorithms in various computer
vision applications: object detection [2], personalized im-
age search [17], hand prosthetics [25] and image categoriza-
tion [33, 34]. Its modification that transfers correlation pat-
terns between the features was used for object detection [11]
and recognition [13]. Though the domain adaptation sce-
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nario is noticeably different from the multi-task one, as it
concentrates on solving only one task instead of all of them,
the two research areas are closely related in terms of their
methodology and therefore can benefit from each other. In
particular, the learning algorithm we propose can be seen
as a way to decompose a multi-task problem into a set of
domain adaptation problems.

Our approach is motivated by the human educational
process. If we consider students at school, they, similarly to
a multi-task learner, are supposed to learn many concepts.
However, they learn them not all simultaneously, but in a se-
quence. By processing tasks in a meaningful order, students
are able to gradually increase their knowledge and reuse
previously accumulated information to learn new concepts
more effectively. Inspired by this example we propose to
solve tasks in a sequential manner by transferring informa-
tion from a previously learned task to the next one instead
of solving all of them simultaneously. This approach makes
learning more flexible in terms of variability between the
tasks and memory efficient as it does not require processing
all training data at the same time.

As for students at school, the order in which tasks are
solved may crucially affect the overall performance of the
learner. We study this question by using PAC-Bayesian the-
ory [24] to prove a generalization bound that depends on the
data representation and algorithm used to solve the tasks.
The bound quantifies the effectiveness of the order in which
tasks are solved and therefore can be used to find a benefi-
cial order. Based on the bound we propose a theoretically
justified algorithm that automatically chooses a favourable
sequence for learning. Our experimental results show that
learning tasks in a sequence can be superior to independent
learning as well as to the standard multi-task approach of
solving them jointly, and that our algorithm is able to reli-
ably discover an advantageous order.

2. Related Work
While our work is based on the idea of transferring infor-

mation through weight vectors, other approaches to multi-
task learning have been proposed as well. A popular idea in
the machine learning literature is that parameters of related
tasks can be represented as linear combinations of a small
number of common latent basis vectors. Argyriou et al. pro-
posed a method to learn such representations using sparsity
regularization in [1]. This method was later extended to al-
low partial overlap between groups of tasks in [19]. It was
also adapted to the lifelong setting in [31], where Ruvolo
and Eaton proposed a way to sequentially update the model
as new tasks arrive, and discussed in [27], where a gen-
eralization bound for lifelong learning was first presented.
In [30], the model was extended to the case when the learner
is allowed to choose which task to solve next and several
heuristics were proposed for making this choice. Exper-

imentally, subspace-based methods have shown good per-
formance in situations where many tasks are available and
the underlying feature representations are low-dimensional.
When the feature dimensionality gets larger, however, their
computational cost grows quickly, and this makes them not
applicable for the type of computer vision problems we are
interested in.1 An exception is [15], where Jayaraman et
al. apply subspace-based method to jointly learn multiple
attribute predictors. However, even there, dimensionality
reduction procedure was required.

Methods based on the sharing of weight vector have also
been generalized since their original introduction in [9], in
particular to relax the assumption that all tasks have to be re-
lated. In [8], Evgeniou et al. achieved this by introducing a
graph regularization. Alternatively, Chen et al. [7] proposed
to penalize deviations in weight vectors for highly corre-
lated tasks. However, these methods require prior knowl-
edge about the amount of similarities between tasks. In con-
trast, the algorithm we present in this work does not assume
all tasks to be related, yet does not need a priori information
regarding their similarities, either.

The question how to order a sequence of learning steps
to achieve best performance has previously been studied
mainly in the context of single task learning, where the
question is in which order one should process the training
examples. In [4] Bengio et al. showed experimentally that
choosing training examples in an order of gradually increas-
ing difficulty can lead to faster training and higher predic-
tion quality. Similarly, Kumar et al. [20] introduced the self-
paced learning algorithm, which automatically chooses the
order in which training examples are processed for solving
a non-convex learning problem. In the context of learning
multiple tasks, the question in which order to learn them
was introduced in [21], where Lad et al. proposed an algo-
rithm for optimizing the task order based on pairwise pref-
erences. However, they considered only the setting in which
tasks are performed in a sequence through user interaction
and therefore their approach is not applicable in the standard
multi-task scenario. In the setting of multi-label classifica-
tion, the idea of decomposing a multi-target problem into a
sequence of single-target ones was proposed by Read et al.
in [29]. However, there the sharing of information occurs
through augmentations of the feature vectors, not through a
regularization term.

3. Method
In the multi-task scenario a learning system observes

multiple supervised learning tasks, for example, recogniz-
ing objects or predicting attributes. Its goal is to solve
all these tasks by sharing information between them. For-

1In preliminary experiments we tried to use ELLA [31], as one of the fastest
exiting methods, but found the experiments intractable to do at full size. A simplified
setup produced results clearly below that of other baselines.



mally we assume that the learner observes n tasks, de-
noted by t1, . . . , tn, which share the same input and out-
put spaces, X ⊂ Rd and Y = {−1,+1}, respectively.
Each task ti is defined by the corresponding set Si =
{(xi1, yi1), . . . , (ximi , y

i
mi)} of mi training points sampled

i.i.d. according to some unknown probability distribution
Di over X × Y . We also assume that for solving each task
the learner uses a linear predictor f(x) = sign〈w, x〉, where
w ∈ Rd is a weight vector, and we measure the classi-
fication performance by the 0/1 loss, l(y1, y2) = Jy1 6=
y2K. The goal of the learner is to find n weight vectors
w1, . . . , wn such that the average expected error on tasks
t1, . . . , tn (given that the predictions are made by the corre-
sponding linear predictors) is minimized:

er(w1, . . . , wn) =
1

n

n∑
i=1

E
(x,y)∼Di

Jy 6= sign〈wi, x〉K. (1)

3.1. Learning in a fixed order

We propose to decompose a multi-task problem of solv-
ing n tasks into n domain adaptation problems. Specifically,
we assume that the tasks t1, . . . , tn are processed sequen-
tially in some order π ∈ Sn, where Sn is the symmetric
group of all permutations over n elements, and informa-
tion is transferred between subsequent tasks: from tπ(i−1)
to tπ(i) for all i = 2, . . . , n. In this procedure the previ-
ously solved task serves as a source of additional informa-
tion for the next task and any of the existing domain adapta-
tion methods can be used. In this paper we use an Adaptive
SVM [16, 36] to train classifiers for every task due to its
proved effectiveness in computer vision applications. For
a given weight vector w̃ and training data for a task, the
Adaptive SVM performs the following optimization:

min
w
‖w − w̃‖2 +

C

m

m∑
j=1

ξj (2)

sb.t. yj〈w, xj〉 ≥ 1− ξj , ξj ≥ 0 for all 1 ≤ j ≤ m.

Specifically, to learn a predictor for the task tπ(i) we
solve (2) using the weight vector obtained for the previous
task, wπ(i−1), as w̃. For the very first task, tπ(1), we use the
standard linear SVM, i.e. w̃ = 0. To simplify the notation,
we define π(0) to be 0 and w0 to be the zero vector.

Note that this approach does not rely on the assumption
that all the tasks t1, . . . , tn are equally related. However
its performance will depend on the order π as it needs sub-
sequent tasks to be related. In the next section we study
this question using statistical learning theory and introduce
an algorithm for automatically defining a beneficial data-
dependent order.

3.2. Learning a data-dependent order

Here we examine the role of the order π in terms of the
average expected error (1) of the resulting solutions. How-

ever, we do not limit our theoretical analysis to the case
of using Adaptive SVMs as described earlier. Specifically,
we only assume that the learning algorithm used for solv-
ing each individual task tπ(i) is the same for all tasks and
deterministic. This algorithm, A(wπ(i−1), Sπ(i)), returns
wπ(i) based on the solution wπ(i−1) obtained for a previ-
ously solved task and training data Sπ(i). The following
theorem provides an upper-bound on the average expected
error (1) of the obtained predictors (the proof can be found
in the supplementary material).

Theorem 1. For any deterministic learning algorithm A
and any δ > 0, the following inequality holds with probabil-
ity at least 1−δ (over sampling the training sets S1, . . . , Sn)
uniformly for any order π ∈ Sn:

1

2n

n∑
i=1

E
(x,y)∼Di

Jy 6= sign〈wi, x〉K ≤

1

n

n∑
i=1

[
1

mπ(i)

mπ(i)∑
j=1

Φ̄

(
y
π(i)
j 〈wπ(i), x

π(i)
j 〉

||xπ(i)j ||

)
+

||wπ(i)−wπ(i−1)||2

2
√
m̄

]
+

1

8
√
m̄
− log δ

n
√
m̄

+
log n√
m̄
, (3)

where m̄ is the harmonic mean of the sample sizes
m1, . . . ,mn, Φ̄(z) = 1

2

(
1− erf

(
z√
2

))
, erf(z) is the

Gauss error function [12, 23], π(0) = 0, w0 = 0 and
wπ(i) = A(wπ(i−1), Sπ(i)).

The left hand side of the inequality (3) is one half of the
average expected error on tasks t1, . . . , tn. This is the quan-
tity of interest that the learner would like to minimize. How-
ever, since the underlying data distributionsD1, . . . , Dn are
unknown, it is not computable. In contrast, its upper bound
given by the right hand side of (3) contains only computable
quantities. It is an average of n terms (up to constants which
do not depend on π), where each term corresponds to one
task. If we consider the term corresponding to the task
tπ(i), its first part is an analogue of the training error. Each

term Φ̄
(
y
π(i)
j 〈wπ(i), x

π(i)
j 〉||xπ(i)j ||−1

)
has a value between

0 and 1 and is a monotonically decreasing function of the
distance between the training point xπ(i)j and the hyperplane

defined by wπ(i). Specifically, it is close to 0 when xπ(i)j is
correctly classified and has large distance from the separat-
ing hyperplane, it is close to 1 when the point is in the wrong
halfspace far from the hyperplane and is 0.5 when xπ(i)j lies
on the hyperplane. Therefore it captures the confidence of
the predictions on the training set. The second part of the
term corresponding to the task tπ(i) is a complexity term.
It measures the similarity between subsequent tasks tπ(i−1)
and tπ(i) by the L2-distance between the obtained weight
vectors. As a result the value of the right-hand side of (3)



depends on π and captures the influence that the task tπ(i)
may have on the subsequent tasks tπ(i+1), . . . , tπ(n). There-
fore it can be seen as a quality measure of order π: a low
value of the right hand side of (3) ensures a low expected
error (1). It leads to an algorithm for obtaining an order
π that is adjusted to the tasks t1, . . . , tn by minimizing the
right hand side of (3) based on the data S1, . . . , Sn. Be-
cause (3) holds uniformly in π, its guarantees also hold for
the learned order2.

Minimizing the right hand side of (3) is an expensive
combinatorial problem, because it requires searching over
all possible permutations π ∈ Sn. We propose an in-
cremental procedure for performing this search approxi-
mately. We successively determine π(i) by minimizing the
corresponding term of the upper bound (3) with respect
to yet unsolved tasks. Specifically, at the i-th step, when
π(1), . . . , π(i− 1) are already defined, we search for a task
tk that minimizes the following objective function and is
not included in the order π yet:

1

mk

mk∑
j=1

Φ̄

(
ykj 〈wk, xkj 〉
||xkj ||

)
+
||wk − wπ(i−1)||2

2
√
m̄

, (4)

where wk = A(wπ(i−1), Sk). We let π(i) be the index
of the task that minimizes (4). Suchwise at each step we
choose the task that is easy (has low empirical error) and
similar to the previous one (the corresponding weight vec-
tors are close in terms of L2 norm). Therefore this opti-
mization process well fits the intuitive concept of starting
with the simplest task and proceeding with most similar
ones. The resulting procedure in the case of using Adap-
tive SVM (2) for solving each task is summarized in Algo-
rithm 1 and we refer to it as SeqMT. Note that the compu-
tational complexity of SeqMT is quadratic in the number of
tasks n, because on each step it trains an ASVM for every
yet unsolved task (steps 5-7 in Algorithm 1). However, it
can be paralellized, since every such ASVM is trained inde-
pendently from the others.

3.3. Learning with multiple subsequences

The proposed algorithm, SeqMT, relies on the idea that
all tasks can be ordered in a sequence, where each task is
related to the previous one. In practice, this is not always
the case, since we can have outlier tasks that are not related
to any other tasks, or we can have several groups of tasks,
in which case it is beneficial to form subsequences within
the groups, but it is disadvantageous to join them into one
single sequence.

Therefore, we propose an extension of the SeqMT
model, that allows tasks to form subsequences, where the

2Note that, in contrast, the algorithmA is assumed to be fixed in advance. There-
fore the order π is the only parameter that can be adjusted by minimizing (3) with
preservation of the performance guarantees given by Theorem 1.

Algorithm 1 Sequential Learning of Multiple Tasks
1: Input S1, . . . , Sn {training sets}
2: π(0)← 0, w0 ← 0
3: T ← {1, 2, . . . , n} {indices of yet unused tasks}
4: for i = 1 to n do
5: for all k ∈ T do
6: wk ← solution of (2) using Sk, wπ(i−1)
7: end for
8: π(i)← minimizer of (4) w.r.t. k
9: wπ(i) ← wk where k = π(i)

10: T ← T \ {π(i)}
11: end for
12: Return w1, . . . , wn and π(1), . . . , π(n)

information is transferred only between the tasks within the
subsequence. Our multiple subsequences version, Multi-
SeqMT, also chooses tasks iteratively, but at any stage it
allows the learner to choose whether to continue one of the
existing subsequences or to start a new one. In order to
decide which task to solve next and which subsequence to
continue with it, the learner performs a two-stage optimiza-
tion. First, for each of the exiting subsequences s (includ-
ing empty one that corresponds to the no transfer case) the
learner finds the task ts that is the most promising to con-
tinue with. This is done in the same way as how the next
task is chosen in the SeqMT algorithm. Afterwards, the
learner compares the values of criterion (4) for every pair
(s, ts) and chooses the subsequence s∗ with the minimal
value and continues it with the task ts∗ . Please refer to the
extended technical report [28] for the exact formulation.

4. Experiments

In this section we verify our two main claims: 1) learn-
ing multiple tasks in a sequential manner can be more ef-
fective than learning them jointly; 2) we can find automat-
ically a favourable order in terms of average classification
accuracy. We use two publicly available datasets: Animals
with Attributes (AwA)3 [22] and Shoes4 [5] augmented with
attributes5 [18]. In the first experiment, we study the case
when each task has a certain level of difficulty for learn-
ing the object class, which is defined by human annotation
in a range from easiest to hardest. We show the advantage
of a curriculum learning model over learning multiple tasks
jointly and learning each task independently. We also study
the automatically determined orders in more details, com-
paring them with the orders when learning goes from eas-
iest to hardest tasks in the spirit of human learning. In the
second experiment, we study the scenario of learning visual

3http://attributes.kyb.tuebingen.mpg.de/
4http://tamaraberg.com/attributesDataset/index.html
5http://vision.cs.utexas.edu/whittlesearch/

http://attributes.kyb.tuebingen.mpg.de/
http://tamaraberg.com/attributesDataset/index.html
http://vision.cs.utexas.edu/whittlesearch/


attributes that characterize shoes across different shoe mod-
els. In this setting, some tasks are clearly related such as
high heel and shiny, and some tasks are not, such as high
heel and sporty. Therefore, we also apply the variant of
our algorithm that allows multiple subsequences, showing
that it better captures the task structure and is therefore the
favourable learning strategy.

4.1. Learning the order of easy and hard tasks

We focus on eight classes from the AwA dataset: chim-
panzee, giant panda, leopard, persian cat, hippopotamus,
raccoon, rat, seal, for which human annotation is available,
whether an object is easy or hard to recognize in an im-
age [32]. For each class the annotation specifies ranking
scores of its images from easiest to hardest. To create easy-
hard tasks, we split the data in each class into five equal
parts with respect to their easy-hard ranking and use these
parts to create five tasks per class. Each part has on average
120 samples except the class rat, for which AwA contains
few images, so there are only approximately 60 samples per
part. Each task is a binary classification of one of the parts
against the remaining seven classes. For each task we bal-
ance 21 vs 21 training images and 77 vs 77 test images (35
vs 35 in case of class rat) with equal amount of samples
from each of the classes acting as negative examples. The
data between different tasks does not overlap. As our fea-
ture representation, we use 2000 dimensional bag-of-words
histograms obtained from SURF descriptors [3] provided
with the dataset. We L2-normalize the features and aug-
ment them with a unit element to act as a bias term.

Evaluation metric. To evaluate the performance we use
the classification error rate. We repeat each of the experi-
ments 20 times with different random data splits and mea-
sure the average error rate across the tasks. We report mean
and standard error of the mean of this value over all repeats.

Baselines. We compare our sequential learning model
(SeqMT) with the multi-task algorithm from [9], [10] that
treats all tasks symmetrically (MT). Specifically, MT regu-
larizes the weight vectors for all tasks to be similar to a pro-
totypew0 that is learned jointly with the task weight vectors
by solving the following optimization problem:

min
w0,wi,ξij

‖w0‖2 +
1

n

n∑
i=1

‖wi − w0‖2 +
C

n

n∑
i=1

1

mi

mi∑
j=1

ξij

subject to yij〈wi, xij〉 ≥ 1− ξij , ξij ≥ 0 for all i, j. (5)

In order to study how relevant the knowledge transfer ac-
tually is, we compare SeqMT with a linear SVM baseline
that solves each task independently (IndSVM). As a refer-
ence, we also trained a linear SVM on data that is merged
from all tasks and outputs one linear predictor for all tasks
(MergedSVM).
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Figure 2. Learning the order of easy and hard tasks on AwA
dataset: comparison of the proposed SeqMT method with the
multi-task (MT) and the single-task (IndSVM) baselines. The
height of the bar corresponds to the average error rate performance
over 5 tasks across 20 repeats (the lower the better). As a refer-
ence, we also provide the MergedSVM baseline, trained on data
that is merged from all tasks. For a complete table with all the
results, please refer to the technical report [28].

To understand the impact that the task order has on
the classification accuracy we compare the performance
of SeqMT with baselines that learn tasks in random order
(Random), and in order from easiest to hardest (Semantic)
according to the human annotation as if it was given to us.
Another baseline we found related is inspired by the diver-
sity heuristic from [30]. It defines the next task to be solved
by maximizing (4) instead of minimizing it. We refer to it
as Diversity. All the baselines were re-implemented and use
the same features across experiments.

Model selection. We perform a cross validation
model selection approach for choosing the regularization
trade-off parameter C for each of the methods. In all
our experiments, we select C over 8 parameter values
{10−2, 10−1 . . . , 105} using 5× 5 fold cross-validation.

Results. We present the results of this experiment in
Figure 2 and Figure 3. As we can see from Figure 2, the
proposed SeqMT method outperforms MT and IndSVM al-
gorithms in all 8 cases. This shows that knowledge transfer
between the tasks is clearly advantageous in this scenario,
and it supports our claim that learning tasks sequentially
is more effective than learning them jointly if not all tasks
are equally related. As expected, the reference baseline



MergedSVM improves over single-task baseline IndSVM
in all but one case, as training with more data has better
generalization ability. In some cases, the MergedSVM per-
forms on par or even better than SeqMT and MT methods,
as for example, in cases of chimpanzee and giant panda.
We expect that this happens when tasks are so similar that
a single hyperplane can explain most of them. In this case,
MergedSVM benefits from the amount of data that is avail-
able to find this hyperplane. When the tasks are different
enough, MergedSVM is unable to explain all of them with
one shared hyperplane and loses to SeqMT and MT mod-
els, that learn one hyperplane per task. This can be seen,
e.g. in the cases of hippopotamus and seal, and particularly
much in the case of leopard, where the MergedSVM does
not improve even over independent training.

Next we examine the importance of the order in which
the tasks are being solved, reporting our findings in Fig-
ure 3. All methods in this study use Adaptive SVM as a
learning algorithm for solving the next task and differ only
by how the order of tasks is defined. In all 8 cases the
proposed SeqMT algorithm outperforms the Random order
baseline, which learns the tasks in a random order6. The Di-
versity algorithm is much worse than other baselines, pre-
sumably because the max heuristic of choosing the next task
is not effective in this setting. As a reference, we also check
the Semantic baseline when the tasks are being solved from
easiest to hardest (as if we had prior information about the
easy-hard order of the tasks7). In 6 out of 8 classes, the or-
der learned by our SeqMT model (yellow rhombus) is bet-
ter or on par with the Semantic (green square), except for
classes chimpanzee and giant panda, where we did not man-
age to learn the best order. Interestingly, for some classes
following the strategy of semantic order is worse or on par
with learning them in a random order (cases with seal and
hippopotamus). We credit this to the fact that human per-
ception of easiness and hardness does not always coincide
with what is easy and hard to learn for a machine learning
algorithm. In fact, in cases of seal and hippopotamus, the
human and machine understanding are rather opposite: the
hardest task for human is the easiest from machine learn-
ing perspective, and the easiest task for human is hardest
or medium hard for the learning algorithm. Hence, learn-
ing these classes in random order leads to better results than
learning in a fixed unfavourable order. We check this by
computing the error rates of single SVMs trained per each
task: easiest, easy, medium, hard and hardest as defined by
human studies and visualize the results in Figure 4.

Finally, for each class we compute the performance of
all possible orders to learn 5 tasks, which result in 120 base-
lines8. We visualize the performance of all orders as a vio-

6A different random order is taken for each class for each of the 20 repeats.
7This order is fixed for each class for each of the 20 repeats.
8One baseline defines one fixed order across all 20 repeats. In SeqMT, we learn

Figure 3. Study of different task order strategies in the experiment
with AwA dataset. Four main baselines SeqMT, Semantic, Ran-
dom, Diversity have a distinctive marker and color, and their ver-
tical location captures averaged error rate performance (shown on
the vertical axis). The performance of all possible orders is visu-
alized as a background violin plot, where one horizontal slice of
the shaded area reflects how many different orders achieve this er-
ror rate performance. Note, symmetry of this area is used only for
aesthetic purposes. For a complete table with all the results, please
refer to the supplementary material. Best viewed in colors.

lin plot [14], where each horizontal slice of the shaded area
reflects how many different orders achieve this error rate
(performance stated on the vertical axis). Overall, SeqMT
is highly competitive with best possible fixed orders, clearly
outperforming them in two cases of rat and seal (rhombus
is lower than the yellow area), and loosing in chimpanzee,
which we have observed before. Learning the adaptive or-
der of tasks based on the training sets is advantageous to
solving them in a fixed order.

In order to better understand practical benefits of The-
orem 1, we evaluate the dependencies between the per-
formance of a particular task order and its rank according

an adaptive order that can differ across the repeats.



Chimpanzee Giant panda Leopard Persian cat Hippopotamus Raccoon Rat Seal
Error+Compl 23.86± 0.33 19.33± 0.52 19.36± 0.29 23.81± 0.40 27.83± 0.46 29.04± 0.37 36.34± 0.57 27.04± 0.22

Error 24.47± 0.42 20.02± 0.58 19.97± 0.27 24.84± 0.46 29.07± 0.55 29.75± 0.31 38.00± 0.54 28.27± 0.38
Compl 23.94± 0.32 19.44± 0.50 19.36± 0.29 23.81± 0.40 27.83± 0.46 29.04± 0.37 36.34± 0.57 27.04± 0.22

Table 1. Trade-off between complexity and error terms in the proposed SeqMT strategy of choosing next task (4) on the AwA dataset. The
numbers are average error rate performance over 5 tasks across 20 repeats.

Figure 4. Visualization of machine learning performance (linear
SVM) w.r.t. human annotation of easy-hard tasks for AwA dataset
experiment. Ideally, when human and machine understanding co-
incide, it would be a bottom-up diagonal line. Therefore, in cases
of seal and hippopotamus we would not expect that learning in se-
mantic order would lead us to the best performing strategy, as in
other classes. Best viewed in colors.
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Figure 5. Visualization of the dependence between the test error
and the value of the bound in AwA experiment. On every data
split all possible task orders were sorted according to the corre-
sponding values of the objective function (3) and their test errors
were averaged over 20 repeats. Numbers in the brackets in the
legend are correlation coefficients between the test error and the
value of the bound. Black dashed lines illustrate the best linear fit.
Best viewed in colors.

to (3). For this, for every data split we sort all possible
task orders according to the corresponding values of (3) and
compute their test error (averaged over 20 repeats) as well
as the correlation coefficients between the error rate and the
value of the bound. The results are shown in Figure 5. In all
cases except for chimpanzee there is a positive correlation
between ranking of the task order based on the theoretical
analysis and its test performance, hence, providing the evi-
dence of usefulness of the Theorem 1.

We also study the importance of the two terms in the
objective function (4) for choosing the next task. For this,
we compare our algorithm to two simplifications: choosing
the next task based on the training error only (Error) and
choosing the next task based on the complexity term only
(Compl). The results in Table 1 suggest that the complexity
term, i.e. the similarity between tasks, is the more impor-
tant component, but that its combination with the error term
achieves never worse and sometimes even better results.

To conclude, our proposed algorithm orders the tasks
into a learning sequence to achieve the best performance
results, and is beneficial to all other strategies including the
order annotated for human learning.

4.2. Learning subsequences of related attributes

We focus on 10 attributes that describe shoe models [18]:
pointy at the front, open, bright in color, covered with or-
naments, shiny, high at the heel, long on the leg, formal,
sporty, feminine and 10 classes from the Shoes dataset: ath-
letic, boots, clogs, flats, heels, pumps, rain boots, sneak-
ers, stiletto, wedding shoes. Attribute description comes
in form of class ranking from 1 to 10, with 10 denoting
class that “has it the most” and 1 denoting class that “has it
the least”. We form 10 binary classification tasks, one for
each attribute, using samples from top-2 classes as positive
(classes with 10 and 9 ranks) and samples from bottom-2
classes as negative (classes with 1 and 2 ranks). For more
clarifications on attribute-class description, see the Supple-
mentary material. For each task we balance 50 vs 50 train-
ing images and 300 vs 300 test images, randomly sampled
from each class in equal amount. The data between dif-
ferent tasks does not overlap. As feature representation,
we use 960 dimensional GIST descriptor concatenated with
L1-normalized 30 dimensional color descriptor, augmented
with a unit element as bias term.

Baselines. In addition to all baselines described in the
previous section, we add the MultiSeqMT method that
allows to learn multiple subsequences of attributes (with



Methods Average error
IndSVM 10.34± 0.13
MergedSVM 29.67± 0.10
MT 10.37± 0.13
SeqMT (ours) 10.96± 0.12
MultiSeqMT (ours) 9.95± 0.12

Diversity 12.66± 0.17
Random 12.14± 0.20
RandomMultiSeq 10.89± 0.14

Table 2. Learning subsequences of related attributes on Shoes
dataset. We compare the proposed MultiSeqMT and SeqMT meth-
ods with the multi-task (MT) and the single-task (IndSVM) base-
lines, and report the MergedSVM result as a reference baseline.
We examine the importance of subsequences in which the tasks
are being solved and compare our methods with Diversity, Ran-
dom and RandomMultiSeq baselines. The numbers correspond to
average error rate performance over 10 tasks across 20 repeats (the
lower the better). The best result is highlighted in boldface.

the information transfer within a subsequence). Addition-
ally we include a baseline RandomMultiSeq that learns at-
tributes in random order with an option to randomly start a
new subsequence.

Results. We present the results of this experiment in Ta-
ble 2. As we can see from it, the proposed MultiSeqMT
method outperforms all other baselines and is a favourable
strategy in this scenario. It is better than the SeqMT model
which confirms that learning multiple subsequences is ad-
vantageous, when not all given tasks are equally related.
The single-task learning baseline IndSVM is rather strong
and performs on par with the multi-task learning MT base-
line, possibly because multi-task learning is negatively af-
fected by it forcing transfer between unrelated tasks. As
expected, MergedSVM is unable to explain all tasks with
one hyperplane and performs very poorly in this case.

Similarly to the previous experiment, we examine the
importance of sequences and subsequences in which the
tasks are being solved. First, we compare the performance
of the MultiSeqMT and SeqMT methods with the baselines
that learn tasks in certain order (last three rows in the Ta-
ble 2), and then we will share our findings about the learned
subsequences of attributes.

As we can see from Table 2, MultiSeqMT is able to or-
der the tasks into subsequences in the most effective way.
Learning multiple random subsequences as RandomMul-
tiSeq does is better than learning a single sequence of all
tasks, as SeqMT, Random and Diversity baselines do. How-
ever since SeqMT performs on par with RandomMultiSeq
and clearly better than Random baseline, we conclude, that
even with one sequence we are able to learn a good order
of tasks that is discretely affected by transfer between un-
related tasks. The Diversity baseline is worse than other
baselines also in this setting.

Finally, we analyze the subsequences that MultiSeqMT
has learned. On average, there are 4.6 sequences, typically,
the longest is 5-6 elements, then there are several pairs, and
a few singletons. In particular, there are six attributes, shiny,
high at the heel, pointy at front, feminine, open and for-
mal, that can benefit from each other and often form a sub-
sequence of related tasks. Inside the group, the attributes
shiny and high at the heel frequently start the subsequence
and transfer happens between both of them interchangeably.
The next attributes that often follow the previous two are
pointy at front and feminine; they are also closely related
and interchangeable in order. The attribute open is not al-
ways in the subsequence, but once it is included, it transfers
to formal, which often ends the subsequence.

The remaining four attributes, bright in color, covered
with ornaments, long on the leg and sporty, either form
smaller subsequences, sometimes of two tasks only, or they
appear as separate tasks. Occasionally there is transfer from
long on the leg attribute to covered with ornaments, which
we credit to the fact the shoe class boots shares a high rank
for both of those attributes. In half of the cases, the at-
tributes sporty and bright in color are not related to the other
tasks and form their own subsequences.

5. Conclusion

In this work, we proposed to solve multiple tasks in a
sequential manner and studied the question if and how the
order in which a learner solves a set of tasks influences its
overall performance. First, we provided a theoretical re-
sult: a generalization bound that can be used to access the
quality of the learning order. Secondly, we proposed a prin-
cipled algorithm for choosing an advantageous order based
on the theoretical result. Finally, we tested our algorithm on
two datasets and showed that: 1) learning multiple tasks se-
quentially can be more effective than learning them jointly;
2) the order in which tasks are solved effects the overall
classification performance; 3) our method is able to auto-
matically discover a beneficial order.

A limitation of our model is that currently it allows to
transfer only from the previous task to solve the current one,
hence it outputs a sequence of related tasks or multiple task
subsequences. In future work, we plan to extend our model
by relaxing this condition and allowing the tasks to be orga-
nized in a tree, or a more general graph structure.
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