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Figure 1: The graph Laplacian regularizer (Lap) fails to regularize this toy
example, leading to spiky functions. Our local Gaussian or LG regularizer
leads to smooth functions.

The graph Laplacian regularizer is a first-order regularizer which can lead
to degenerate functions in high-dimensional manifolds. The iterated graph
Laplacian enables high-order regularization, but it has a high computa-
tional cost. Our new regularizer is globally high order and so not degener-
ate, and is also sparse for efficient computation. We build a local first-order
approximation of the manifold as a surrogate geometry, and construct our
high-order regularizer based on local derivative evaluations therein. Sup-
plemental MATLAB code is available.

One of the best established regularizers for semi-supervised learning is
the graph Laplacian L:

RL(f) := f>Lf =
u

∑
i, j=1

[W ]i j( fi− f j)
2, (1)

This converges to the Laplace-Beltrami operator ∆ on the underlying data-
generating M of dimension m [1], which measures the first-order variations
of a continuously differentiable function f on M. However, the convergence
to ∆ reveals an important shortcoming: For high-dimensional manifolds
(m > 1), the null space of ∆ includes discontinuous functions on M, e.g.,
“spiky” Dirac delta-like functions f , with norm ‖ f‖2

∆
= 0 (Fig. 1). This is

important because we commonly minimize the regularized risk of attaining
a zero value by such a function, and so no generalization is obtained.

Zhou and Belkin [3] prevent this degeneracy by iterating powers of
graph Laplacian (with p > m

2 ):

RLp(f) := f>Lpf, (2)

While this adds higher order terms to the regularization matrix, it also makes
L denser, which leads to higher computational cost.

We build a global regularization matrix G based on local high-order (p)
differential operators D evaluated at each point in X .

‖ f‖2
D :=

∫
M

∞

∑
p=1

cp|Dp f |X |2dV (X), (3)

We use a local first-order approximation TX (M) of manifold M at each point
X as a proxy geometry for M near X . Since TX (M) is identified with Rm,
evaluating the derivative operators on X boils down to the calculation of
the derivative operators in Euclidean geometry. Evaluating the Laplace-
Beltrami operator becomes the calculation of the Laplacian operator:

D2
0 f |X = ∆0 f |X =

m

∑
r=1

∂

∂X r

2
f |X . (4)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Algorithm 1: The construction of the regularization functional RG′

from a point cloud X .
Input: X = {X1, . . . ,Xu}, manifold dimension n, k.
Output: G.

1 Initialization: Find k nearest neighbors, e.g., build KD-tree;
2 for i = 1, . . . ,u do
3 Construct the local approximation M at Xi using n-dimensional

PCA of Nk(Xi);
4 Calculate the local regularization matrix Gi for Nk(Xi) in the

PCA representation: Gi = (Li)>(Ki)+1Li (Eqs. 6 and 7);
5 end
6 Re-arrange {Gi} according to the indices of {fi} in f to construct

matrix G s.t. f>Gf =RG(f);

Table 1: Mean L2-reconstruction error on the MoCap dataset.

Algorithm Lap i-Lap LG

Joint angles error 1.62 1.24 1.16
Joint locations error 1.22 0.72 0.50

This still requires explicit derivative calculation. However, for the spe-
cial case of Eq. 3 with coefficients {ck} given as ck =

σ 2k

k!2k with σ2 defined
as the bandwidth in a Gaussian kernel interpolation, we can efficiently cal-
culate an approximation: First, the local energy qi over TXi , defined as

‖qi‖2
D :=

∞

∑
k=1

ck

∫
TXi (M)

|Dkqi|x|2dx = ‖qi‖2
K , (5)

can be analytically evaluated as the corresponding Gaussian reproducing
kernel Hilbert space (RKHS) norm ‖ · ‖K : The second equality is one of the
central results in regularization theory [2]. This is always possible as qi has
k degrees of freedom, and leads to an Euler-Lagrange equation that renders
k as Green’s function of our operator D. Then, we build a new regularizer
RG as a combination of local regularizers on qi− f (Xi) for i = 1, . . . ,u:

RG(f) = ∑
i=1,...,u

fi>Gifi (6)

fi>Gifi = ‖ f (Xi)−qi(·)‖2
K = fi>(I−11i)>(Ki)

+
(I−11i)fi, (7)

where [K]lm =K(xl ,xm), fi = [ f (X1), . . . , f (Xk)]
>, K+ is the Moore-Penrose

pseudoinverse of K, and 11i is an indicator matrix which is zero except for
the l(i)-th column of ones with l(i) being the index of Xi in Nk(Xi).

RG construction pseudocode is in Algorithm 6. In the main paper, we
further augment the null space of our regularizer with the m-dimensional
space of geodesic functions.

For estimating pose in a MoCap database with u =50,000, our new reg-
ularizer is 6× faster than iterated graph Laplacian, and 2.5× slower than
graph Laplacian; furthermore, both pose angle and location errors decrease
vs. both standard and iterated graph Laplacian (Table 1). The full paper
contains further experiments on the CAESAR body shape database. These
show improvements in both regression performance and computation time
over the iterated graph Laplacian regularizer.
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