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Abstract

The common graph Laplacian regularizer is well-established
in semi-supervised learning and spectral dimensionality reduction.
However, as a first-order regularizer, it can lead to degenerate
functions in high-dimensional manifolds. The iterated graph
Laplacian enables high-order regularization, but it has a high
computational complexity and so cannot be applied to large prob-
lems. We introduce a new regularizer which is globally high order
and so does not suffer from the degeneracy of the graph Lapla-
cian regularizer, but is also sparse for efficient computation in
semi-supervised learning applications. We reduce computational
complexity by building a local first-order approximation of the
manifold as a surrogate geometry, and construct our high-order
regularizer based on local derivative evaluations therein. Experi-
ments on human body shape and pose analysis demonstrate the
effectiveness and efficiency of our method.

1. Introduction
The graph Laplacian regularizer is established as one of

the most popular regularizers for semi-supervised learning [5],
spectral clustering [20, 13], and dimensionality reduction [3]. The
underlying assumption for using the graph Laplacian regularizer
is that data lie on a low-dimensional sub-manifold, and the object
(e.g., a function) of interest should be regularized as defined on
the manifold rather than as defined on the entire ambient space.
By measuring local pairwise deviations of the function values in
the ambient space, the graph Laplacian regularizer approximates
the first-order variations on the manifold, thereby enabling us
to regularize the function based on its first-order energy without
having to know the manifold analytically.

Despite its solid theoretical background [4, 9] and success
in many applications, the graph Laplacian regularizer has an
important shortcoming that makes its usage less favorable on
data lying in high-dimensional manifolds: as we will discuss,
as a first-order regularizer, the null space of the graph Laplacian
regularizer contains discontinuous functions on manifolds with
dimensionality larger than 2 [15, 24].

Recently, Zhou and Belkin [24] proposed an iterated graph
Laplacian approach that avoids this degeneracy and enables
regularization on high-dimensional manifolds. The price for
the non-degeneracy and the resulting simplicity of the algorithm
is high computational complexity: the iterated graph Laplacian

regularizer is constructed by taking powers of the graph Laplacian
matrix, which makes the original matrix denser and, accordingly,
for large-scale problems (e.g.,O(100,000)) it cannot be directly
applied efficiently.

We propose an empirical regularizer which avoids degeneracy
and leads to a sparse matrix. Our algorithm is based on the
local linear approximation of the manifold: At each point, the
corresponding neighborhood is projected onto its tangent space,
where the high-order derivatives of the function are defined in this
surrogate geometry. Instead of explicitly calculating high-order
derivatives and measuring the corresponding complexity of
the function, we measure its reproducing kernel Hilbert space
(RKHS) norm. Similar to the graph Laplacian, its sparsity is
explicitly controlled based on the local neighborhood structure.
We present experimental results on human body shape and
pose datasets, which show that our method is superior to graph
Laplacian and iterated graph Laplacian techniques in terms of
accuracy and computational complexity.

As this paper is equation and symbol rich, we summarize
all symbols and notation conventions on the first page of the
supplemental material.

2. Problem statement
While our proposed regularizer can be used in clustering and

dimensionality reduction, as with the graph Laplacian and iterated
graph Laplacian regularizers, we focus on semi-supervised learn-
ing which enables us to compare numerically the performance
of each algorithm.

For a set of data points X = {X1,...,Xu} ⊂ Rn plus the
corresponding labels {Y1,...,Yl}⊂R for the first l points in X
where l�u, the goal of semi-supervised learning is to infer the
labels of the remaining u−l data points in X . Our approach is
based on regularized empirical risk minimization:

argmin
f:Rn→R

l∑
i=1

(Yi−f(Xi))
2+λR(f), (1)

where R(·) is the regularization functional. Here, we use the
standard squared loss function for simplicity, though our frame-
work is applicable to any convex loss function. This problem
can be solved either by reconstructing the underlying function f
or by identifying its evaluation f|X on X . In this paper, we focus
on the second case, which is often called transductive learning.

Most semi-supervised learning algorithms can be characterized
by how the unlabeled data points of X are used to construct a



corresponding regularizerR(f|X ). One of the best established
regularizers is the graph Laplacian L [13]:

RL(f):=f>Lf=

u∑
i,j=1

[W ]ij(fi−fj)2, (2)

where fi = f(Xi), f := f|X = [f1, ... , fu]>, and W is a
non-negative input similarity matrix which is typically defined
based on a Gaussian:

[W ]ij=exp

(
−‖Xi−Xj‖

2

b

)
. (3)

One way of justifying the use of the graph Laplacian comes
from its limit case behavior as u→∞ and b→ 0: When the
data X is generated from an underlying manifold M with
dimensionm≤n, i.e., the corresponding probability distribution
P has support in M , the graph Laplacian converges to the
Laplace-Beltrami operator ∆ onM [4, 9]. The Laplace-Beltrami
operator can be used to measure the first-order variations of a
continuously differentiable function f onM :

‖f‖2∆ :=

∫
M

f(X)[∆f|X]dV (X)=

∫
M

‖∇f|X‖2gdV (X),

(4)
where g is the Riemannian metric, and dV is the corresponding
natural volume element [12] of M . The second equality is the
result of Stokes’ theorem. Accordingly, a graph Laplacian-based
regularizerRL can be regarded as an empirical estimate of the
first-order variation of f onM based on X .

However, the convergence of the graph Laplacian L to the
Laplace-Beltrami operator ∆ reveals an important shortcoming
for it to be used as the standard regularizer for high-dimensional
data: For high-dimensional manifolds (m> 1), the null space
of ∆ includes discontinuous functions onM . This is suggested
by the Sobolev embedding theorem that states that, in general,
any (semi-)norm induced by differential operators with order
d≤m/2 will have discontinuous functions in its null space [18].
In particular, the norm ‖ · ‖∆ in Eq. 4 which measures the
first-order variation has a null space consisting only of continuous
functions (in particular, constant functions) when m= 1 only.
For m> 1, the null space of ∆ contains some discontinuous
functions as a subset of L2 space which are equivalent almost
everywhere to constant functions, except for the set of measure
zero [7]. In other words, there are “spiky” functions f , e.g., Dirac
delta functions, with norm ‖f‖2∆ =0 (Fig. 1).

This is especially important in semi-supervised learning
because we actively minimize the regularized risk of attaining
a zero value by such a function (Eq. 1). While this has been
well-known in statistics, its effect on semi-supervised learning has
only recently been analyzed by Nadler et al. [15]. They showed
that, in the limit case (i.e., u→∞), whereRL is used, indeed
the null space of the empirical risk functional (Eq. 1) includes
a function f which is zero everywhere except for the labeled data
points {X1,...,Xl}, where f agrees with the given labels, and
no generalization is obtained.

In practice, due to the finite number of data points u, the
learned function f (more precisely, its evaluation f on X ) is not

a Dirac delta function exactly, but is a very steep, sheer-sided
spike which peaks at the labeled data points (Fig. 1). For discrete
problems, e.g., classification, where only relative values of f are
relevant, it is possible to normalize the output values based on
the local distribution of f to soften such peaks, as exemplified
in [22]. However, this technique is not applicable for learning
continuous functions.

Zhou and Belkin [24] presented the first approach that
explicitly prevents this degenerate case in semi-supervised
learning. They proposed using powers of graph Laplacian (or
iterated graph Laplacian) as a regularizer:

RLp(f):=f>Lpf, (5)

with p> m
2 . In the limit case as u→∞, Lp converges to ∆p,

which corresponds to the penalizer of (selected) dp2e-th order
variations in the context similar to Eq. 4 [24]:

‖f‖2∆p =

∫
M

f(X)[∆pf|X]dV (X), (6)

which is infinite when f is discontinuous. The ability to
regularize over higher-order derivatives avoids the degenerate
case of learning discontinuous functions.

One of the major limitations of iterated graph Laplacian is
that, due to the density of the resulting matrix Lp, it cannot be
directly applied to large-scale problems. For a non-iterated graph
Laplacian, finding the minimizer of Eq. 1 with RL requires
building and solving a linear system of size u×u. Even for
large-scale problems (e.g., u≈105), this is affordable since the
corresponding weight matrixW can be well-approximated by a
sparse matrix constructed from a k-nearest neighbor (NN) graph.
However, in general, iterating L (taking powers Lp) makes a
sparse matrix denser. This is especially true when p is large,
which is required for high-dimensional data, as suggested by
the Sobolev embedding theorem. For instance, with u=50,000,
solving Eq. 1 with iterated graph Laplacian is 15× slower (Sec. 6)
than the Laplacian case.

3. Local high-order regularization
Our goal is to build a new regularizer that shares the desirable

properties of both penalizing discontinuous functions with Lp
and being sparse in L for fast computation. To achieve this
goal, we build a global regularization matrix G based on local
regularizers evaluated at each point in X .

First, we take a class of high-order manifold operators
as regularizers by adopting the regularization framework of
Yuille and Grzywacz [23]. These regularizers correspond to
generalizations of Eq. 4:1

‖f‖2D :=

∫
M

∞∑
k=1

ck|Dkf|X|2dV (X), (7)

1As a special case, when cp=1 and {ck}k6=p=0, ‖·‖2D becomes ‖·‖2∆p

(Eq. 6). In general, different choices of differential operators are possible,
e.g., Hessian, rather than the powers of ∆ and∇. This choice was motivated
by the demonstrated empirical success of the resulting regularizer in many
applications [23], and the computational efficiency as facilitated by the use of
the corresponding Gaussian RKHS as discussed in Sec. 4.



Figure 1. Example on 2D data. Section 5 contains details of this toy example; the surface in the training data plot is to help with visualization only,
and no regularization has taken place. The Lap result largely fails to regularize, apart from points very near to the original training data. These spikes
can be seen in the zoom inlay. The result of i-Lap looks hyperbolic because its null space includes polynomials. In this example, both i-Lap and
LG are acceptable since they lead to smooth functions. Inspired by [24].

Dkf=

{
∆kf, for even k

∇(∆kf), for odd k
(8)

|Dkf|2 =

{
(Dkf)2, for even k

g(Dkf,Dkf), for odd k
(9)

where k is the order of the derivative operator, and coefficients
ck≥0.

For a known manifold with known metric and Christoffel
symbols [12], the derivative operators in Eq. 8 are easy to
calculate. However, in most practical applications, the manifold
is not directly observed but is only indirectly observed as a
point cloud of sampled data points X ⊂ Rn, where M is a
(m-dimensional) sub-manifold of Rn. Accordingly, direct
calculation of Eq. 8 is infeasible.

A local first-order approximation D0. We bypass this
problem by using a local first-order approximation TX(M) of
manifoldM at each pointX (MX) in Rn as a proxy geometry
forM nearX. Since TX(M) is identified with Rm, evaluating
the derivative operators in Eq. 8 on X boils down to the
calculation of the derivative operators in Euclidean geometry. In
particular, evaluating the Laplace-Beltrami operator becomes
the calculation of the Laplacian operator:

D2
0f|X=∆0f|X=

m∑
r=1

∂2
rf|X. (10)

Subscript 0 denotes operators defined on the proxy geometry,
where ∆0[·]|X is the Laplacian defined at TX(M). ∂r is
shorthand for ∂

∂xr . Practically, the dimension ofm is unknown
and so is a hyper-parameter.

With a manifold approximation, the next step is to construct
approximations of Eq. 8 and Eq. 10 given X and f|X .
Suppose that for each data point Xi, the corresponding k-NN
Nk(Xi)⊂ X are identified. First, we estimate the first-order
approximation TXi

(M) by performing principal component
analysis onNk(Xi) [6]: The representations {xj}kj=1 ofNk(Xi)
on TXi

(M) are given as the first m-principal components of
Nk(Xi). Then, at Xi, the approximation of the Laplacian in
Eq. 10 is obtained by fitting a smooth interpolation ϕi in (x)

to {f(Xj)}kj=1 and then extracting the trace of the resulting
HessianHϕi of ϕi, which we denote as S(2)(Xi). The surrogate
function ϕi can be a (constrained) second-order polynomial hi
(for ∆) or a Gaussian kernel interpolation qi (for ∆k, k>0):

hi(x)=f(Xi)+

m∑
r=1

[ai]rx
r+

m∑
r=1,s=r

[bi]r,sx
rxs, (11)

qi(x)=f(Xi)+

k∑
j=1

[αi]jK(xj,x), (12)

where x=[x1,...,xm]>, and

K(x,x′)=exp

(
−‖x−x

′‖2

σ2

)
. (13)

The coefficients {ai,bi} and {αi} of hi and qi, respectively, are
calculated as the standard least squares fit:

[ai,bi]= argmin
w∈Rm+m(m+1)/2

k∑
j=1

(
f(Xj)−hi(xj)

)2

, (14)

αi= argmin
a∈Rk

k∑
j=1

(
f(Xj)−qi(xj)

)2

, (15)

where w is a vector of linear and quadratic coefficients in the
second-order polynomials.

By combining these estimates of the local Laplacians and
re-arranging the variables, one can construct a matrixB as a new
regularizer on a point cloud X :

‖f‖2∆0
≈RB(f)=f>Bf=

u∑
i=1

f(Xi)S
(2)(Xi). (16)

To evaluate the squared Laplacian operator ∆2
0|Xi , we

calculate the corresponding fourth-order derivatives of ϕ. In
the case when ϕ=q, the derivatives of ϕ of any order are easily
calculated by noting that the derivative of a Gaussian function can
be evaluated based on the original Gaussian and the combinations
of Hermite polynomials [10]. The corresponding empirical
regularizer RE based on a finite number of points X can be



constructed similarly to Eq. 16:

RE(f)=

∞∑
k=1

ckf
>E(k)f :=

u∑
i=1

SXi
(f), (17)

where k indexes the order of derivatives, SXi
(f) =∑∞

k=1 ck|S(k)(Xi)|2, S(k)(Xi) corresponds to an empirical
approximation of Dkf|Xi , and E(k)(Xi) is the corresponding
regularization matrix.

Summary Our regularizer RE is constructed by combining
a set of local high-order regularizers, each of which is obtained
based on a local first-order approximation of M . This avoids
explicit calculation of high-order derivatives on M . Our
regularizerRE(f) is explicitly given as a sparse matrix E, i.e.,
RE(f) = f>Ef , where E is obtained by aligning the local
matrices {E(k)}. Since this is a combination of local high-order
regularizers, it is a global high-order regularizer, and therefore
it avoids the degeneracy of the graph Laplacian regularizer. As
a combination of local high-order regularizers, RE is a global
high-order regularizer, and therefore it avoids the degeneracy of
the graph Laplacian regularizer.

Explicitly calculating {E(k)} is both numerically unstable
and computationally demanding. Therefore, we propose a
stable approximation of RE in Sec. 4. Before we explain this
more-practical implementation, for interested readers, we discuss
the relationship between the operatorsD andD0.

3.1. Relation between D and D0.
The regularizer RE depends on the local first-order

approximation TX(M) at each X. If the M is smoothly
embedded in the ambient space Rn, especially in the sense that
the corresponding second fundamental form [12] is bounded, then
the approximation error is third-order: Let dX :=dX(·,·) be the
geodesic distance between two points onM in the neighborhood
N (X) ofX,2 then the distance d̃X between these points in the
proxy geometry TX(M) is related as [4, 9]

dX= d̃X+O(d3
X). (18)

The use of local first-order approximations to a manifold is
justified by its success in many applications (e.g., [19, 6]). We sup-
port this approximation further by noting that the corresponding
orthonormal coordinates in TX(M) can be regarded as approxi-
mations of Riemannian normal coordinates [11]. In a Riemannian
normal coordinate chart centered at a pointX, the manifold ap-
pears Euclidean up to second-order. Specifically, atX, the corre-
sponding Riemannian metric g becomes Euclidean: the first order
derivatives vanish, and evaluating the Laplace-Beltrami operator
boils down to the calculation of the Laplacian in Euclidean space:

∆f|X=

m∑
r,s=1

∂r(g
rs
√

detg∂sf)√
detg

=∆0f|X, (19)

where ∂r = ∂
∂xr , δrs =

∑
tg
rtgts, δrs: δrs = 1 if r = s and 0,

otherwise, grs = g(∂r,∂s), and detg is the determinant of the
2The injectivity radius inj(X) of X∈M is always positive [12]. Here, we

assume thatN(X)⊂ inj(X).

matrix evaluation {grs}. Using this setup, similarly to the graph
Laplacian L case, one can show the convergence of the matrix
B (Eq. 16) to ∆ in the limit case as u→∞, the diameter ε of
Nk is controlled carefully:

Definition 1 (Audibert and Tsybakov [1]) For given con-
stants c0,ε0>0, a Lebesgue measurable set A⊂Rm is called
(c0,ε0)-regular if

λ[A∩B(x,ε)]≥c0λ[B(x,ε)], ∀ε∈ [0,ε0],∀x∈A,
where λ[S] is the Lebesgue measure of S ⊂ Rm [7]. We fix
constants c0,ε0>0 and 0<µmin<µmax<∞ and a compact
C ⊂Rd. We say that the strong density assumption is satisfied
if the distribution P is supported on a compact (c0,ε0)-regular
setA⊆C and has a density µ w.r.t. λ bounded above and below
by between µmin and µmax

µmin≤µ(x)≤µmax, ∀x∈A and µ(x)=0 otherwise.

Proposition 1 If Hessian Hf on M is Lipschitz continuous
with the Lipschitz constant γ, and the natural volume element
dV is bounded in the sense that the underlying probability
distribution P satisfies strong density assumption, then there are
constants C1,C2,µ0>0 such that with probability larger than
1−(m2+3m)exp(−C2uε

m):

|tr[Hh(x)]−∆f(X)|2≤ k

uεm
C1ε

2γ2

µ0
, (20)

where tr[A] calculates the trace of A, k = |X ∩ B(X, ε)|,
and B(X,ε) is the ε-neighborhood of X in coordinates, i.e.
B(X, ε) := {X′ : ‖x − x′‖TX(M) ≤ ε}, with x′ being the
coordinate representation ofX′.

The proof of this convergence be found in the supplemental ma-
terial. For simplicity of proof, we use the ε-neighborhood B(X,ε)
instead of k-NNsNk(X). It can be easily modified for the k-NN
case (see supplemental material). Accordingly, in Eq. 20, ε is the
only parameter to be controlled to obtain the convergence. The
role of ε is similar to the width of the Laplacian weight function
(Eq.3) in [4]: Roughly, decreasing ε guarantees that the local
surrogate function h is flexible enough to well-approximate f .
However, it should not shrink too fast to ensure that there are
sufficient data points k in B(X,ε) to prevent h from overfitting
to f . This leads to the condition that εm-shrink should be slower
than u-increase, so that uεm→∞. The number of neighborhoods
k in Eq. 20, given as |B(X,ε)∩X|, is automatically controlled
by sampling X from P . This leads to O( k

uεm ) = 1 (see
supplemental material) guaranteeing quadratic (ε2) convergence.
All other constants C1, C2, µ0, and γ are independent of u.

The strong density assumption is moderate. In particular, it
holds for any compact manifold with a continuous distribution.

In general, the derivatives of the metric g with orders higher
than 2 are non-vanishing even in normal coordinates. In this case,
for instance, ∆2

0f|X deviates from ∆2f|X in third-order:

∆2f|X=∆2
0f|X+D3(f|X), (21)



where D3(f|X) contains selected derivatives of f at X up to
third-order.3

However, since they agree at the highest (fourth) order, ∆2
0

shares two important properties with ∆2 which are precisely
what leads to a proper regularizer form<4. Whenm<4, and
the metric g and the embedding î :M→Rn are smooth:

1. c2∆0 +c4∆2
0 with c2,c4 > 0, has the null space consisting

of truly constant functions (i.e., excluding the degenerate
functions which deviate from constant functions on sets of
measure zero), and

2. The evaluation of the corresponding norm defined similarly
to Eq. 4 is infinite for any discontinuous functions.

This property extends to general high-order cases: The
approximation error of ∆k

0|X to ∆k|X is of order k−1 and, for
a manifold with dimension m≥4, the regularizers ‖·‖2D0

that
replaces Dk with Dk

0 in ‖·‖2D (Eq. 7) with c1,...,cbm/2+1c>0
share the same null space with ‖·‖2D. Furthermore, their
evaluations on any discontinuous functions produce infinite value.

4. Local Gaussian regularization

The regularization cost functionalRE (Eq. 17) has both the
desired properties of being a high-order regularizer and of leading
to a sparse system. However, evaluating it requires explicitly
calculating the powers of the Laplacian evaluation ∆k

0f|Xi
at

each pointXi∈X and for each non-zero coefficient ck. This is
not only tedious but also numerically unstable since, in practice,
the corresponding high-order derivatives are estimated by fitting
a function ϕi to only a small number (k) of data pointsNk(Xi):
fitting a high-order polynomial (as an extension of hi in Eq. 12)
is very unstable in general. While this can be resolved with
smooth Gaussian interpolation i.e. ϕi=qi, due to the existence
of high-order polynomials contained in the derivatives of qi
(Eq. 12), the resulting derivative estimates can still be unstable,
i.e., perturbed significantly with respect to slight variations of f .

We focus on a special case of the regularization functional
RE, with a specific choice of derivative operator contribution
{ck}, which enables us to bypass the explicit evaluation of
individual derivativesDk while retaining the desired properties
of being a sparse, robust, and high-order regularizer.

First, the stability problem in evaluating derivatives can be
addressed by taking integral averages of derivative evaluations
(Dkf; Eq. 8) and the corresponding magnitude |Dkf| within a
neighborhood U(Xi) ofXi, rather than their point evaluations at
Xi. For instance, for derivative operators of even powers, instead

3This can be easily verified by expanding the derivatives in normal coordinates
at X:

∆2f =

m∑
i,j,r,s=1

(
∂i∂j[grs∂r∂sf]+∂i∂j[∂r[∂grs]∂sf]

+
1

2
∂i∂j

grs m∑
t,u=1

gtu∂r[∂gtu]∂sf

).

of |D2k
0 f|Xi| (Eq. 7), we use:

|D̃2k
0 f|Xi

|= 1

vol(U(Xi))

∫
U(Xi)

[∆k
0ϕ

i|x]2dx, (22)

where vol(A) measures the volume of A⊂TXi(M), which is
a fixed constant givenM .

This still requires explicit calculation of derivatives. However,
for the special case of Eq. 7 where the coefficients {ck} are given
as:

ck=
σ2k

k!2k
, (23)

with σ2 as defined in (13) we can efficiently calculate an approx-
imation: First, the local energy of ϕi=qi over TXi

defined as

‖qi‖2D :=

∞∑
k=1

ck

∫
TXi

(M)

|Dkqi|x|2dx=‖qi‖2K, (24)

can be analytically evaluated as the corresponding Gaussian
reproducing kernel Hilbert space (RKHS) norm ‖ · ‖K: The
second equality is one of the central results in regularization
theory [23], established by obtaining qi as the solution of a
minimization that combines the energy in Eq. 7 with an empirical
loss in Eq. 15. This is always possible as qi has k degrees of
freedom, and leads to an Euler-Lagrange equation that renders
k as Green’s function of our operatorD.

Second, we note that, for large u, the local energy (Eq. 24) well
approximates the sum of local stabilized derivations (Eq. 22). For
a Gaussian functionK(xj,·), its value and derivatives decrease
rapidly as the corresponding points of evaluation deviate from
centerXj (depending on its width σ2). Accordingly, its support
is effectively limited within a neighborhood U ′(Xj). SinceDkqi

is a kernel expansion of Nk(Xi), its support is limited to a
larger neighborhoodN (Xi) of Xi that encompasses {U ′(Xj),
∀Xj∈Nk(Xi)}. Then, we set U(Xi) byN (Xi) and obtain the
local energy ‖qi‖2D as a replacement of the integrand in (7).

In general, for given U(Xi), this approximation becomes
more accurate as σ2 and Nk(Xi) decrease to zero, which is
the case as u→∞ (see accompanying supplemental material).
However, for practical applications, we do not tune σ2 orNk(Xi)
to minimize error or to achieve a desired level of accuracy since
explicitly calculating the corresponding error is tedious (see
Appendix). More importantly, having too small σ2 or Nk(Xi)
for finite u will lead to a bad interpolation function: a Gaussian
kernel interpolation with small σ2 may lead to a highly non-linear
function qi that overfits to {f(Xj)}kj=1. While we propose
setting σ2 and Nk(Xi) as decreasing functions with respect
to u so that the approximation becomes exact as u→∞, for
practical applications with fixed u (including our experiments),
we implicitly determine the diameter of Nk(Xi) based on the
selected k-NN, and regard k and σ2 as hyper-parameters. As
described in Sec. 6, σ2 is actually adaptively determined based
onNk(Xi) and accordingly onlyNk(Xi) is tuned.

Now, we build a new regularizer RG as a combination of
local regularizers on ϕi− f(Xi) for i = 1,...,u, similarly to



Eq. 17 in Section 3:

RG(f)=
∑

i=1,...,u

fi
>
Gifi (25)

with:

fi
>
Gifi=‖f(Xi)−ϕi(·)‖2K (26)

=fi
>

(I−11i)>(Ki)
+

(I−11i)fi, (27)

where [K]lm =K(xl,xm), fi = [f(X1),...,f(Xk)]
>, K+ is

the Moore-Penrose pseudoinverse of K, and 11i is an indicator
matrix whose element is zero except for the l(i)-th column that
consists of ones with l(i) being the index ofXi inNk(Xi).

5. Augmenting null spaces
Our local Gaussian regularizer completely eliminates the

possibility of generating degenerate functions and so provides a
valid regularization on high-dimensional manifolds. Further, it is
designed as a combination of local regularizers (Eq. 25) and so is
tailored to incorporate a priori knowledge of the local behavior of
functions. In particular, it is easy to tune the regularizer such that
it does not penalize functions with desirable properties (i.e., to
augment the null space of the regularizer so that it contains those
functions). One good choice for f are geodesic functions: both
Donoho and Grimes [6] and Kim et al. [11] have demonstrated
that geodesic functions, which are linear along geodesics, i.e.,
nothing more than linear functions in Euclidean space, are
preferred over other functions since they correspond to the most
natural parametrization of the underlying data.

The geodesic functions are completely characterized by
their local behavior. In particular, in the Riemannian normal
coordinates, they are locally linear functions. Accordingly, we
can easily add geodesic functions to the null space of the global
regularizerRG(f) by including linear functions in the null space
of the local regularizers (Eq. 27): We fit a linear function to
fi and subtract the resulting function from fi before we fit the
non-linear function (Eq. 12). This can be easily incorporated into
new local regularization matrices:

(G′)i=‖f(Xi)−ϕiL(·)−ϕi(·)‖2K (28)

=(Li)>(Ki)
+
Li, (29)

whereϕiL(·) is the linear regressor fitting fi in normal coordinates
(i.e., ϕiL(x) = (ΦiL)+(I−11i)fix), ΦiL ∈Rk×m is the design
matrix whose rows correspond to the normal coordinate values
ofNk(Xi), and

Li=I−11i−ΦiL(Φi)+
L(I−11i). (30)

The new regularization functional RG′ , in which {(G′)i}
replaces {Gi}, has a richer null space: a one-dimensional space
of constant functions plus anm-dimensional space of geodesic
functions. This null space should not be confused with the too
large null space of the original graph Laplacian regularizer. The
null space of our updated local Gaussian regularizer does not
include any degenerate functions.

While this setup does not cause any noticeable increase

Algorithm 1: The construction of the regularization
functionalRG′ from a point cloud X .

Input: X={X1,...,Xu}, manifold dimension n, k.
Output: G′.

1 Initialization: Find k nearest neighbors, e.g., build KD-tree;
2 for i=1,...,u do
3 Construct the local approximation

M atXi using n-dimensional PCA ofNk(Xi);
4 Calculate the local regularization

matrix Gi forNk(Xi) in the PCA representation:
(G′)i=(Li)>(Ki)+1Li (Eqs. 29 and 30);

5 end
6 Re-arrange {(G′)i} according to the indices

of {fi} in f to construct matrixG′ s.t. f>G′f=RG′(f);

of computational complexity, in our preliminary MoCap
experiments (see Sec. 6), this reduced error rates by around 3%.
Accordingly, throughout the entire experiments, we use this new
local Gaussian regularizer.
RG′ construction pseudocode is in Algorithm 6. Supplemental

MATLAB code is available on the author’s webpage. This real
code references the pseudocode to aid explanation.

6. Experiments
To demonstrate our algorithm performance, we consider

examples of estimating continuous values in human body shape
and pose analysis: the MoCap database [2] of optical motion
capture data and the CAESAR human body database [17]. For
comparison, we performed experiments with existing graph
Laplacian (Lap) [13, 3] and iterated graph Laplacian (i-Lap) [24]
regularizers.

Toy example. We uniformly sample 10,000 data points in
[−1,1]× [−1,1]. Five points (four corners and center) were
assigned labels in {−1,10} (red dots in Fig. 1). While the
original graph Laplacian (Lap) produces a “spiky” function, the
iterated graph Laplacian (i-Lap) and our regularizer (LG: local
Gaussian) produced smooth functions, which demonstrate the
importance of high-order regularization.

MoCap database. This contains 50,000 entries describing
human body poses captured with an optical marker-based system
[2]. For each pose entry, inverse kinematics is applied to recover
skeletal joint angles represented as axis-angle (ê,θ). A body
model comprising a surface mesh consisting of 6,449 vertices
is deformed via surface skinning by embedding this skeleton
of 62 joints, leading to 42 degrees of freedom parameterized
by the joint angles. The locations of end effectors (left/right
hand, left/right foot, and head) were separately recorded from the
surface mesh model. These constitute a 15 (5×3)-dimensional
coarse, mid-level representation (Figure 3). The task is to estimate
the 42-dimensional joint angles from the mid-level representation.
This is useful for retrieval and indexing of motion data, e.g.,
for motion capture with motion priors of similar poses [2], fast
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Figure 2. The CAESAR database contains 4,258 3D scans of human beings, along with ground-truth body measurements taken with calipers. Here,
we see variation in female shape across the database.

Root

Joint angles
(ê,θ)

Figure 3. (a) Skeletal kinematic chain. (b) End effectors (blue) recovered
from a geometric model fit to the skeleton. Each joint angle is in
angle-axis form, with axis ê and angle θ.

Table 1. Mean L2-reconstruction error on the MoCap dataset.

Algorithm Lap i-Lap LG

Joint angles error 1.62 1.24 1.16
Joint locations error 1.22 0.72 0.50

MoCap data indexing in authoring tools [14], or synthesis of
motions from sparse sensor data with pose priors [21].

We randomly chose 100 labels, with the remaining data points
used as unlabeled examples. The experiment was repeated 10
times with different sets of labeled examples and the results
were averaged (Table 1). We also show the corresponding results
measured in the 186 (62×3)-dimensional joint location space that
is restored by applying forward kinematics. Both in terms of joint
angle and position error, we outperform the competing methods.

CAESAR database. This contains 4,258 3D scans of human
beings, along with ground-truth measurements of their bodies
obtained with calipers (Fig. 2). Detailed description and example
usages of this dataset can be found in [17, 8]. With a technique
based on the work of Pishchulin et al. [16], we fit a statistical
body model to each of the scans, which is able to represent body
variations such as height, hip and belly girth, limb length, and so
on. Each body scan is represented as a vector in 20-dimensional
feature space spanned by a linear shape basis.

Table 2 shows absolute error in semi-supervised learning
performance when comparing the three regularizers, over
different numbers of labeled items. Each experiment was repeated
10 times and averaged. In most cases, our approach significantly
improves performance. The worse performance of LG over i-Lap
for some cases is caused by over-fitting in cross-validation.

Parameters. There are four hyper-parameters in our algorithm:
the number (k) of nearest neighbors, the dimensionality (m)
of the manifold, the regularization parameter (λ), and the local
scale parameter (σ; see Eq. 23). In preliminary experiments, the
performance of our algorithm varied significantly with respect
to the first three parameters, while it was rather robust to σ
variations. We decide σ adaptively for each point Xi, at 0.1
times the mean distance betweenXi and the elements ofNk(Xi)
while the remaining three hyper-parameters were optimized
by 5-fold cross-validation (CV) where, in each run, a subset
of labeled points were left out while all unlabeled data points
are kept. There are three and four hyper-parameters for Lap and
i-Lap, respectively: λ, k, and the parameter b for building the
graph Laplacian (Eq. 3) for Lap and the iteration parameter p
for i-Lap (Eq. 5). These parameters were tuned in the same way
as for LG. Across Table 2, k varied from 20 to 40,m from 10 to
17, λ from 10e−8 to 10e−5, b from 5 to 300, and p from 1 to 4.

Computation complexity and time. For each algorithm,
this depends on the number of data points u, the number of
nearest neighbors k, and the number of non-zeros entries of the
resulting regularization matrix that lies in-between O(uk) and
O(uk2), depending on the well-behavedness of neighborhoods
(where O(uk2) corresponds to random neighbors). The most
time-consuming component of each algorithm is solving the
corresponding system.

For the MoCap dataset, with u = 50,000, k = 20, and
p= 4 for i-Lap, it took 30, 50, and 40 seconds for Lap, i-Lap,
and LG to build the regularization matrices, respectively. The
corresponding sparsity, defined as the number of nonzero
entries divided by the number of all entries in the regularization
matrix, is 0.0005, 0.0400, and 0.0017 for Lap, i-Lap, and LG,
respectively. This resulted in the run-times for solving the systems
of roughly 50, 720, and 120 seconds, respectively, on an Intel
Xeon 3GHz CPU in MATLAB. For the CAESAR dataset, with
u=4,258, run-times were only a few seconds. The improvement
in computation time for large sets, coupled with the accuracy
improvements demonstrated, makes our new regularizer a good
alternative to Lap and i-Lap.

7. Discussion
We focused on constructing analytic solutions of Eq. 1. In gen-

eral, an iterative solver can be used instead (i.e., gradient descent).
In this case, the iterated Laplacian i-Lap need not be computed
explicitly as its action on a vector can be computed by iterating
matrix-vector multiplications. We briefly explored this possiblity:



Table 2. Mean absolute error for estimating 6 ground truth parameters from the CAESAR dataset. Bold face marks the best results. The Deviation
from mean replaces the evaluation of each f(Xi) with the mean of each output variable (calculated from the entire data set). This presents an idea
of the difficulty of the estimation problem for each parameter.

# Labels Algorithm Age Arm length Shoulder breadth Weight Sit height Foot length

Deviation from mean 10.89 35.98 36.13 13.94 39.50 15.57

20
Lap 10.89 30.23 32.69 12.80 32.58 13.80

i-Lap 12.46 19.54 25.34 6.30 20.54 10.30
LG 12.55 17.92 20.64 3.17 19.31 9.87

50
Lap 10.79 24.28 28.88 10.99 26.05 11.14

i-Lap 10.61 17.43 21.14 6.62 18.39 8.20
LG 11.03 16.30 16.15 2.25 16.49 8.34

100
Lap 10.64 20.62 26.00 9.60 21.72 9.46

i-Lap 10.21 16.97 19.33 5.08 17.65 7.99
LG 9.85 15.07 15.39 1.98 15.59 8.05

200
Lap 10.45 18.23 23.07 8.09 18.99 8.38

i-Lap 9.99 16.49 17.56 4.11 17.25 7.81
LG 9.40 13.96 14.93 1.77 12.42 7.76

500
Lap 10.00 16.44 19.39 6.02 17.31 7.75

i-Lap 9.52 15.62 15.84 2.93 16.65 7.59
LG 8.93 13.42 14.53 1.60 11.94 7.54

During gradient evaluation, the number of matrix-vector mul-
tiplcations increases from 1 to p: For MoCap (u=50,000, p=4),
i-Lap iterative optimization was around five times slower than
analytic optimization, and three times slower than our iterative LG
optimization. For i-Lap with p>4, analytic optimization is not
feasible and the iterative i-Lap could be used; however, our LG
requires no iteration. This suggests that LG can still be faster than
i-Lap. For larger-scale problems, both methods need iteration.

Local first-order approximation approaches, like ours,
are supported by their success in manifold learning and
regularization [19, 6]. However, local first-order approximations
result in the corresponding derivatives being exact up to second
order, but at third order and higher, the derivatives may deviate
from the underlying covariant derivatives. Nevertheless, since the
highest-order terms agree, calculating the Euclidean derivatives
therein enables us to completely eliminate the possibility of
generating degenerate functions.

Furthermore, the number of hyper-parameters to be tuned
(the other parameter σk is adaptively decided) is the same
as for classical graph Laplacian and is one smaller than for
iterated graph Laplacian. Combined with the observed empirical
performance of our algorithm, and the computationally efficient
regularization, this supports its usage.

Our local Gaussian interpolation varies σk with the local
neighborhood size Nk(X) (instead of making it constant per
dataset), which desires rigorous limit case behavior analysis.
Further future work should address the theoretical analysis of
our regularizer (e.g., error bound), and the possible benefit to
spectral clustering and dimensionality reduction.

8. Conclusion

We have presented the local Gaussian regularizer: a new high-
order regularization framework on data manifolds. Our algorithm
does not suffer from the degeneracy of graph Laplacian-based reg-
ularizers. Further, it leads to a sparse regularization matrix, thereby
facilitating application to large-scale datasets. Experiments on
human body shape and pose analysis demonstrate the improved
accuracy and faster execution time of our new algorithm.
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