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Abstract

This paper describes a method for recovering appear-
ance of inner slices of translucent objects. The outer ap-
pearance of translucent objects is a summation of the ap-
pearance of slices at all depths, where each slice is blurred
by depth-dependent point spread functions (PSFs). By ex-
ploiting the difference of low-pass characteristics of depth-
dependent PSFs, we develop a multi-frequency illumination
method for obtaining the appearance of individual inner
slices using a coaxial projector-camera setup. Specifically,
by measuring the target object with varying the spatial fre-
quency of checker patterns emitted from a projector, our
method recovers inner slices via a simple linear solution
method. We quantitatively evaluate accuracy of the pro-
posed method by simulations and show qualitative recovery
results using real-world scenes.

1. Introduction
Translucent objects have complex appearance. It is a su-

perposition of light rays emitted from inner slices at every
depths, blurred by subsurface scattering. Because seeing in-
ternal appearance of objects is of broad interest in medical
and art analyses and industry inspection, various imaging
techniques have been developed in the past. In particular,
since the translucency effect becomes significant for many
materials in near infrared (NIR) wavelengths, infrared pho-
tography is used as one of common techniques for achieving
this goal. For example, it is used for observing inner layers
of oil paintings that tell us the drawing technique, growth,
history, and/or authenticity of old age painters.

One of the major challenges in observing inner layers
of translucent objects is to separate inner appearances with
properly dealing with scattering. To overcome this problem,
we develop a multi-frequency illumination method, which
can recover sharp appearance of inner slices at a desired
depth with explicitly removing scattering blur. Compared
with conventional techniques that aim at a similar goal, our
method is faster and safer than the X-ray fluorescence tech-

nique [5], and sharper results can be obtained differently
from infrared reflectography [9].

Our method exploits the fact that the spread of light
due to scattering has dependency on the depth of inner
layer where light rays are emitted. By modeling the light
spreads as depth-dependent point spread functions (PSFs)
and utilizing their depth-dependent low-pass characteris-
tics, we develop a method for recovering inner layer ap-
pearances from a set of images taken under a variant of
high-frequency illumination [26]. Specifically, our method
uses a spatial pattern projection with varying the pattern
pitch – we call this multi-frequency illumination. Our multi-
frequency illumination method allows us to separate direct
(high-frequency) and global (low-frequency) components
as in [26], yet at various frequency levels that define high-
and low-frequencies. Our method uses the direct compo-
nent observations for recovering the appearance of inner
slices, which are related to the direct components via depth-
dependent PSFs.

The key contributions of this paper are twofold. First,
we describe the relationship between depth inside a translu-
cent object and its PSF by a physically motivated scattering
model. Second, using the relationship, we develop a method
for recovering the appearance of inner slices using varying
pitch pattern projection. We implement a coaxial projector-
camera setup for measuring real-world objects, and show
the recovery results using oil painting, mural, and paper
scenes.

2. Related work
As our work aims to recover slices from superposed ob-

servation, layer decomposition techniques [29, 27, 19] from
super-imposed images are related. These methods are de-
signed for scenes with semi-transparent layers that do not
exhibit multiple scattering; thus, the image formation model
is represented by simple alpha blending. Our method is
designed for translucent scenes where significant multiple
scattering is observed.

Our work is related to descattering methods in computa-
tional photography in that our goal is to recover sharp slices
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inside a scattering medium. Narasimhan et al. [25]’s and
Gu et al. [10]’s methods sharpen images of a target scene in
muddy liquid by precisely modeling single scattering. Their
methods work well for those scenes that do not exhibit mul-
tiple scattering. Fuchs et al. [8] use multiple cameras and
projectors for descattering using a confocal imaging tech-
nique for the purpose of recording a solid target in scatter-
ing media. Duran et al. [6] descatters a target pattern in-
side translucent media by combining pattern projection and
compressive sensing approach. Our method aims at recov-
ering slices inside translucent objects at arbitrary depths.

Our method falls in a class of active sensing techniques
that use high-frequency pattern projection. The original Na-
yar et al. [26]’s method and its extended methods [18, 21,
22, 30, 2, 1] separate direct and global components by pro-
jecting multiple high-frequency patterns. Gupta et al. [11]
acquire scene depths with direct-global separation by mod-
eling both projector’s defocus and global light transport. We
also use a pattern projection technique not only for separat-
ing scattering effects but also for recovering outer and inner
slices.

Methods for measuring transparent or translucent media,
such as smoke scanning, are also related to our work. Mor-
ris et al. [20] recover the shape of clear transparent materials
that refract light by analyzing light rays recorded from dif-
ferent viewpoints. Hawkins et al. [13] acquire the density
distribution of participating media by laser scanning, which
does not contain multiple scattering, such as smoke. Ihrke
and Magnor [15] reconstruct the volume of dynamic semi-
transparent media by a visual-hull based method. While re-
lated, our goal is to recover slices inside translucent objects
instead of reconstructing 3-D shape of an object’s surface.

In other fields, there have been independent develop-
ments of technologies for imaging internal structures of tar-
get objects. In art analysis, several techniques have been
developed for imaging hidden layers of paintings. Infrared
reflectography [9] and X-ray transmission radiography [5]
can visualize internal layers of paintings, although the sur-
face texture cannot be separated. X-ray fluorescence tech-
nique [5] uses spectroscopic information measured over a
couple of days and estimates the metallic atom distribution
for determining colored appearance of inner layers. Tera-
hertz imaging [3] is an another technique that can see inner
layers of paints. In the medical field and its related areas,
optical coherence tomography [14, 7] techniques are widely
used, especially for visualizing retina. These techniques
enable visualizing inside translucent objects using interfer-
ence of coherent light at the cost of expensive wavelength-
order optics and mechanics. In contrast to these method,
our method uses a commodity camera and projector for re-
covering slices inside translucent objects, resulting in an in-
expensive setup. In microscopy, there are methods that use
pattern projection for visualizing inside substances, or re-
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Figure 1: Appearance of translucent objects. (a) Captured
image contains all components from each depth. (b) Lights
spread depending on the depth.

constructing 3-D shape of a small sample, such as protein
structure [12, 17, 31]. They sharpen the microscopic image
by precisely taking into account both micro-scale optical
blur and scattering blur. Our aim is to develop a technique
that is applicable to a standard scale, where multiple scat-
tering is significant.

3. Appearance of translucent objects
When an image of a translucent layered object is

recorded, the observed intensity can be modeled as a sum-
mation of the appearance of multiple depth layers as illus-
trated in Fig. 1(a). Let Sd be the appearance slice of the
layer at depth d. The observed intensity Lo(c) at camera
pixel c can be expressed by

Lo(c) =
∑
d

Sd(c) (1)

in a discrete form.
The appearance slice Sd is generally blurry due to the

scattering effect inside the medium. The spread of radiance
at a scene point inside a translucent object varies depending
on its depth from the object surface [28]. In general, the spa-
tial spread of light can be expressed using PSFs. Let us con-
sider light rays emitted (or returned) from a specific depth
inside a translucent object. When the depth is shallower,
the PSF becomes sharper. On the other hand, it gradually
spreads as the depth d becomes deeper inside the medium
as illustrated in Fig. 1(b). In this manner, there is a close
relationship between the PSF and depth. By denoting hd as
a PSF at depth d, the appearance slice Sd at depth d can be
expressed as

Sd(c) = (Rd ∗ hd)(c), (2)

whereRd is the sharp slice that we are interested in estimat-
ing, which we call a radiance slice, and ∗ denotes a convo-
lution operator.



Since the appearance of the translucent object under nor-
mal illumination is a superposition of radiance of multiple
layers as Eq. (1), the observation Lo can be re-written as

Lo(c) =
∑
d

(Rd ∗ hd)(c). (3)

Our goal is to recover radiance slicesRd from the composite
observationLo. Before introducing the solution method, we
describe a model of depth-dependent PSFs hd.

Depth-dependent PSFs We represent the depth-
dependent PSFs hd by a physically motivated scattering
model, the radiative transfer equation (RTE) [4, 16]. With
the RTE model, the intensity of an arbitrary light ray
in a homogeneous scattering medium can be iteratively
calculated [23] as

I(d, θ) =

∞∑
k=0

(gk(T ) + gk+1(T ))Lk(cos θ), (4)

where Lk is the Legendre polynomial of order k, g0 = 0,
and

gk(T ) = I0 exp

(
−2k + 1

k
(1− qk−1)T − (k + 1) log T

)
.

The parameter T (= σd) represents optical thickness, which
is the product of extinction coefficient σ of scattering media
and distance d from the point light source to the scatter-
ing point. The forward scattering parameter q controls how
light rays spread; q = 0 corresponds to isotropic, while
positive and negative values of q indicate forward and back
scattering, respectively. θ is the angle between the depth
axis and light ray’s direction as depicted in Fig. 2(a). k is
the number of light bounces, and I0 is the intensity of the
point light source.

In our problem setting, a camera is placed outside the
media. When we consider the x-axis is on the surface
of translucent object as illustrated in Fig. 2(b), the depth-
dependent PSF hd(x) can be written as

hd(x) = I (d′, φ) , (5)

where d′ =
√
x2 + d2 and φ = tan−1

(
x
d

)
. In this work,

we assume the camera is placed far enough from the ob-
ject compared to both d and x; therefore, the direction of
emitting light rays from the surface becomes parallel to the
depth axis. Moreover, we ignore the refraction of the sur-
face for simplicity.

4. Proposed Method
We are interested in recovering radiance slices Rd from

the mixed observation Lo. To achieve this goal, we develop
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Figure 2: Illustration of RTE model described in [23]. (a)
Black arrow shows an scattering light ray, whose intensity
depends on d and θ. d is the distance from the point light
source I0 inside scattering media and θ is the radial direc-
tion of the light ray. (b) Depth-dependent PSF hd can be
expressed using RTE model. We consider the x-axis is on
the surface of translucent object and assume the direction of
emitting light rays from the surface becomes parallel to the
depth axis.

a multi-frequency illumination measurement method, which
is built upon the high-frequency illumination (HFI) method
proposed by Nayar et al. [26]. To begin with, we briefly
review the original HFI method.

High-frequency illumination method [26] The HFI
method separates direct and global components by project-
ing small pitch checker patterns. When the phase of the pro-
jection pattern changes slightly, the direct component D(c)
varies accordingly, but the global component G(c) remains
stable. Based on this observation, their method computes
direct and global components using the maximum Lmax(c)
and minimum Lmin(c) intensities that are obtained by shift-
ing the projector pattern as{

D(c) = Lmax(c)− Lmin(c),
G(c) = 2Lmin(c).

(6)

The direct component D(c) contains high-frequency com-
ponents, while the global component G(c) contains only
lower frequency components than the frequency of projec-
tion pattern. Therefore, the HFI method can be viewed as
a separation technique for high- and low-frequency compo-
nents.

Pattern pitch of HFI In our case, when a translucent
object is measured under HFI with pattern pitch p, we
can obtain direct component D(p, c) and global component
G(p, c) as D(p, c) =

∑
dDd(p, c)

G(p, c) =
∑
dGd(p, c)

Sd(c) = Dd(p, c) +Gd(p, c),
(7)

whereDd(p, c) andGd(p, c) are the direct (high-frequency)
and global (low-frequency) components at depth d, respec-
tively.



When the projected pattern pitch p changes slightly, in-
tensities of direct and global components also change. In
fact, there is an important relationship between the pitch
size and strength of direct component. Suppose we mea-
sure the scene with two variations of pattern pitches pi and
pj (pi < pj) individually. When the pattern pitch be-
comes larger, wider spread of light rays are included in the
direct component, hence the corresponding direct compo-
nents have the following relationship:

Dd(pi, c) < Dd(pj , c), pi < pj . (8)

This relation indicates that the separation frequency varies
with the pattern pitch – wider frequency band is regarded as
the direct component as the pattern pitch becomes larger.
As low-pass characteristics of depth-dependent PSFs are
also depth-dependent, the difference of direct components
Dd(pj , c)−Dd(pi, c) also varies with depth d. Our method
exploits these differences for recovering each inner slice by
changing the projection pattern pitch.

4.1. Multi-frequency illumination

By measuring the target object using multi-frequency
patterns, corresponding multiple direct components are ob-
tained. Unfortunately, increasing the number of measure-
ments does not make the problem easier as it also increases
the number of variables to solve for. To make the problem
tractable, we assume that the texture of direct components
does not vary drastically when the pattern frequency is high
enough and the pitch variation ∆p(= pj−pi) is sufficiently
small. Namely, we assume that direct component images
Dd(p, c) have linear relationship within a small pitch varia-
tions of pi and pj as

Dd(pi, c) ≈ α∆pDd(pj , c), (9)

where α∆p
is the ratio of the mean brightnesses of two in-

dividual images. At the same time, these direct components
Dd at a certain depth d are supposed to have a similar tex-
ture with the original radiance; therefore, the following re-
lationship holds:

Dd(p, c) ≈ α(hd, p)Rd(c), (10)

where α(hd, p) is a relative brightness ofDd(p, c) toRd(c).
We call α(hd, p) the direct component ratio that represents
the ratio of direct component’s mean intensity to the radi-
ance Rd(c)’s mean intensity. Hence, Eq. (7) can be rewrit-
ten as

D(p, c) =
∑
d

α(hd, p)Rd(c). (11)

With these assumptions, a set of direct component im-
ages D(p, c) taken under the multi-frequency illumination

ofm pitch variations (p = p0, p1, . . . , pm−1) can be written
in a matrix form as

D(c) = AR(c), (12)

where

D(c) =
[
D(p0, c) D(p1, c) · · · D(pm−1, c)

]T
,

A =

 α(hd0 , p0) · · · α(hdn−1
, p0)

...
. . .

...
α(hd0 , pm−1) · · · α(hdn−1

, pm−1)

 ,
R(c) =

[
Rd0(c) Rd1(c) · · · Rdn−1(c)

]T
.

Here, D is a vector of direct components measured underm
variations of the pattern pitches at pixel c, R is a vector of n
layers of radiance slices, and A is a matrix containing direct
component ratios of direct components computed from the
projected pattern pitch and the depth-dependent PSF.

When the number of projected patterns m is no less than
the number of depth layers n (m ≥ n) and rank(A) = n,
the radiance slices R can be obtained in a least-squares
sense by computing the pseudo-inverse A+ as

R(c) = A+D(c). (13)

Computation of direct component ratio The direct
component ratio α(hd, p) can be derived from the depth-
dependent PSF hd and the projected pattern pitch p. When
checker pattern is projected to a translucent object, it
reaches at the depth d with the blur effect, and returns to
the surface with the blur effect again. To obtain the direct
component ratio, we simply consider the difference of max-
imum and minimum intensities (as original HFI) under sim-
ple conditions: the reflectance of the layer is constant, and
illumination is normalized. The direct component ratio can
then be obtained as

α(hd, p) = max ((lp ∗ hd) ∗ hd)
−min ((lp ∗ hd) ∗ hd) , (14)

where lp is normalized projection patterns, whose pitch is p.
Normalized illumination is defined as that 1 to be white and
0 to be black. max and min operators return a maximum
and minimum value from all pixels, respectively.

4.2. Estimation of informative slices

Once we determine the depths to recover (or PSFs), we
can set up a matrix A using Eq. (14), and thus can recover
slices corresponding to the PSFs using Eq. (13). Selecting
a good set of depths is important for recovering informa-
tive slices. For example, if an arbitrary depth is chosen, it
may correspond to the middle of distinct texture layers. To
recover informative slices, we use a two step approach to
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Figure 3: Selection of informative PSFs (corresponding to
depths). We select useful PSFs from a lot of candidate PSFs.
(a) Results of the optimization problem (Eq. (15)). Non-
zero pixels indicate the informative ones. (b) We find local
maxima of the non-zero counts for all pixels across depth.
(c) Selected informative PSFs.

determining the matrix A. The first step is the estimation of
a set of informative depths via optimization. This is equiva-
lent to estimating the small number of useful PSFs out from
many possible PSFs. The second step is the recovery of
slices at the informative depths determined by step 1. The
flow of this strategy is illustrated in Fig. 3. Now, we explain
the details of each step.

Step 1: Estimation of informative depths Elements of
matrix A depend on depth-dependent PSFs; hence estima-
tion of informative depths corresponds to estimating the
shape of PSFs. The depth-dependent PSFs depend not on
the absolute depth value but on the relative depth T , hence
we regard it as a depth value. The parameter T of the RTE
model are set from 1.01 to 10.01 step by 0.05. We add the
offset 0.01 because Eq. (4) does not converge if T ≤ 1.00.
Initially, we set up the matrix A using all parameters (thus
m < n) in order to estimate informative slices.

Frequently, there are only small number of informative
slices inside translucent objects. Hence we can regard such
radiance slices exist sparsely along depth. Our method uses
this sparsity to determine informative slices by solving a
l1 regularized problem (as known as the lasso [32]) with a
non-negative constraint about R:

R̃(c) = argmin
R(c)

‖AR(c)−D(c)‖22 + λ ‖R(c)‖1 (15)

subject to R � 0.

It becomes a quadratic programming (QP) problem and thus
can be efficiently solved in a polynomial time. We solve
the optimization in a per-pixel manner. Solving a similar
problem for an entire image is also a viable option; how-
ever, we have observed that these two does not make much

differences because of the following step 2. Therefore, for
efficient parallelization, we choose the per-pixel implemen-
tation.

Step 2: Informative slice recovery We can regard the
depth d (= T

σ ), where R̃d(c) has a non-zero value, is infor-
mative while others are not. This step determines informa-
tive depth slices of the whole image by consolidating all the
pixel-wise selections. The informative depths d̃ are local
maximas of the sum of l0 norm of R̃d(c) for all pixels. The
evaluation function f(d) is defined as

f(d) =
∑
c

‖R̃d(c)‖0, (16)

and we find all local maxima of f(d) along d from 0 to
200 as shown in Fig. 3(b). Using the selected depths, we
can set up a small sized matrix Ã. Finally, we can recover
informative slices using the matrix Ã in a least-square sense
as

R(c) = Ã+D(c) (17)

in the same way as Eq. (13).

5. Experiments
We evaluate our method numerically by simulation and

also show qualitative results using real-world scenes.

5.1. Evaluation by simulation

We first assess the validity of the approximation in
Eq. (10), and then evaluate the accuracy of the slice recov-
ery.

Validity of approximation in Eq. (10) In this simulation,
we change the pattern pitch p from 3 to 20 pixels, the depth
d from 4 to 18 [mm] (in optical depths T , which correspond
to 4σ to 18σ), and use 15 different slice textures. The scene
is one-layered for the purpose of assessing the approxima-
tion capability. The coefficient σ is set to 0.001 [mm−1],
and forward scattering parameter q is set to 0.9. These pa-
rameters are chosen according to [24]. We generate the ap-
pearance slices Sϕd,p using checker pattern lϕp as

Sϕd,p = ((lϕp ∗ hd) ◦Rd) ∗ hd. (18)

p and ϕ are the pitch and phase of the pattern, and ◦ is the
Hadamard (element-wise) product operator. We compute
direct component Dd(p) from these synthetic images with
changing the phase ϕ.

We assess correlations between the recovered direct
components Dd(p) and the ground truth slices Rd using
zero-mean cross correlation (ZNCC). The ZNCC value falls
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Figure 4: Evaluation result of the approximation in Eq. (10).
We calculate the cross correlation between direct compo-
nent slice Dd(p) and the ground truth slice Rd. Correlation
values are very high even with the worst case.

in the range from −1 to 1, where a negative value in-
dicates negative correlation, and a greater value indicates
higher similarity. The evaluation results are summarized in
Fig. 4. The plots indicate mean correlations of all slice tex-
tures. ZNCC values decreases as the depth becomes deeper
(greater T ) and pattern pitch becomes larger. However, they
are all consistently well correlated (minimum ZNCC value
is 0.982 and the mean value is 0.992), and it shows the ac-
curacy of the approximation.

Evaluation of slice recovery We also evaluate how accu-
rately slices can be recovered by our method via simulation.
We generate images Lϕp under projection patterns lϕp as

Lϕp =
∑
d

((lϕp ∗ hd) ◦Rd) ∗ hd. (19)

We use 20 different two-layered scenes that have distinct
textures R5 and R15 at two depth ranges 5 ≤ d < 15 and
15 ≤ d. The textures are randomly paired from the ones
that are used in the previous experiment. We change the
pitch p of checker pattern and shift the pattern with ϕ. From
the generated images, we compute D(p, c) for each pattern
pitch p, and apply our method to recover slices at d = 5 and
15.

We again use ZNCC values between the recovered and
ground truth slices. The experimental results are shown in
Table 1. In all sets, the ZNCC values of upper layer is higher
than the lower layer as expected. The result of this simula-
tion indicates that our method can recover slices of various
textures with high correlation.

Figure 5 shows a synthetic example of three-layer recov-
ery, where slices at at d = 1, 5, and 15 are recovered. The
ZNCC scores for the recovery results are 0.98, 0.83, and
0.51, respectively. While the result is generally consistent
with the ground truth, negative intensities and ringing arti-
facts are observed due to the discrete pitch variations and
convolution.

ZNCC values
Layers Max. Mean Min.

Top layer 0.99 0.93 0.89
Bottom layer 0.92 0.84 0.67

Table 1: 2-layer recovery result for 20 sets of scenes.
We compare recovered slices to the ground truth slices by
ZNCC. Higher ZNCC scores indicate more accurate recov-
ery.

(a) Simulated scene. three star-shaped pillars with different
heights are placed in scattering media. An example slice is il-
lustrated by the orange plane.

Ground truth slices

Recovered slices

d = 1 d = 5 d = 15

(b) Comparison of the recovered and ground truth slices

Figure 5: (a) Target scene (b) Result of three-layer recovery
at d = 1, 5, and 15. The ground truth radiances slices (up-
per) and recovered slices (lower) are shown. ZNCC scores
are 0.98, 0.83, and 0.51, respectively.

5.2. Real-world experiment

We develop a coaxial projector-camera setup for realiz-
ing the measurement setup as shown in Fig. 6. The coaxial
setup has a favorable property, i.e., correspondence between
projector and camera pixels becomes invariant with respect
to depths. Unlike non-coaxial settings, with which a illu-
mination ray inside the translucent object forms a line in
the image coordinates [30], the coaxial setting allows us to
easily separate the direct rays. We use a “LightComman-
der” projector, which is a DMD projector development kit
by Texas Instruments, and use near infrared (NIR) light for
measurements. The lenses of both camera and projector are
set same (Ai Micro-Nikkor 105mm f/2.8S) for easy align-
ment. In the experiment, we use 18 variations of checker
patterns (3px to 20px with 1px interval), and shift the pat-
tern for one-third of square size for each pattern.



camera

beam splitter
projector

target object

a pair of same lenses

Figure 6: Measurement setup. The coaxial system allows
us to maintain the correspondences between projector and
camera pixels.

Experimental results First, we use an oil painting as a
target scene as shown in Fig. 7(a), which has draft and sur-
face pigment layers as depicted in Figs. 7(b) and 7(c). By
taking a standard photograph under the near infrared light
(as done in infrared reflectography in the art field), we can
vaguely observe the draft layer as shown in Fig. 7(d). This
is, however, the superposition of draft and surface pigment
layers, hence it results in a blurry image. Therefore, a sim-
ple layer decomposition still suffers from the blur. We can-
not see the shape of the draft tree clearly even if we manu-
ally adjust the contrast, which is essentially same as infrared
reflectography [9], as shown in Fig. 7(e). By applying our
method to this scene, two PSFs are estimated as depicted in
Fig. 7(h) and two slices are recovered as in Figs. 7(f) and
7(g). The upper surface layer corresponds to the surface
pigment layer. Because the yellow pigment is almost trans-
parent in the infrared wavelength, the corresponding paint-
ing regions become dark in the surface slice. The lower
layer shows the inner layer, where the texture of the tree is
clearly observed.

The second target scene is stacked papers that consist
of layered translucent papers and printed texture films as
shown in Fig. 8(a). In a normal NIR photograph, we can
observe mixed textures as shown in Fig. 8(b), where tex-
tures are blurry and appearances across depths are super-
positioned. Our method correctly selects two informative
depths and recovers radiance slices as shown in Figs. 8(c)
and 8(d). In the upper slice, only ‘ABCD’ texture is visible,
and ‘1234’ texture appears in the lower slice. Due to the
shadowing effect caused by the solid material on the upper
layer (the texture of ‘ABCD’), the lower slice is contains the
‘ABCD’ texture as an unobserved shadowed region.

Additional results are shown in Fig. 9. The upper row is
a piece of painting, where the painter’s signature is hidden
under pigment. Our method clearly recovers surface texture
and inner signature slices. The lower row is a mural paint-
ing covered by white mold. In this example, we used RGB

(a) The scene (b) Draft layer (c) Oil painted

(d) NIR photo (e) Baseline (f) Ours (g) Ours
(surface slice) (inner slice)

0 20σ 40σ 60σ 80σ 100σ 120σ 140σ

optical depth ( T )
0
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6e4

8e4

10e4

l 0
-n

or
m 2 selected PSFs

(h) Selected PSFs corresponding to local maxima

Figure 7: Experimental result of oil painting. (a) Target
scene. We draw a colored round tree on top of the draft of
spiny tree. (b) Inner layer (draft) of the painting. (c) Painted
scene. Red rectangle region is measured. (d) Normal photo
using infrared light. (e) Baseline result. Intensity range and
contrast of (d) are manually adjusted. (f, g) Results of our
method. Layer of surface texture and hidden drawing, re-
spectively. Range of the intensities is adjusted for visual-
ization. (h) Selected PSFs. There are two peaks in the plot
of Eq. (16), hence two corresponding PSFs are selected to
recover.

light sources instead of NIR, and record each color channel
separately. Our method can recover the slices in this exam-
ple as well, and the inner appearance is clearly visible in the
result of Fig. 9(d).

Thickness estimation Our method can be applied to es-
timate the thickness of pigments by computing Eq. (16) in
a patch-based manner instead of the entire image region.
As we do not know the scattering coefficient, the estimated
thickness is relative (but linear). Figure 10(a) is a scene,
where brown pigment is drawn on a white paper. We find
the relative depth of a pixel using a 9 × 9 image patch
centered at the pixel. The estimated thickness is shown in
Fig. 10(b), where the estimated relative thickness is shown
in a pseudo color map.



(a) Target scene (b) Normal photo (c) Surface slice (d) Inner slice

Figure 9: Additional results for a painting and a mural. (a) Target scenes. Upper: author’s signature covered by red pigment.
Lower: A mural painting covered by white mold. Rectangle regions are measured. (b) Normal photograph. Both upper and
lower slices, and global components are composed. (c) Recovered slices of surface. (d) Recovered inner slices. The signature
and inner painting are visible clearly.

(a) The scene (b) NIR photo

(c) Upper slice (d) Lower slice

Figure 8: Experimental result of layered scene. (a) Scene is
a composite object of texture and translucent sheets (tracing
paper). (b) Normal photo of the scene. Textures inside the
object can be seen, although blurry. (c) Recovered slice of
upper layer. (d) Recovered slice of lower layer. Textures in
sub-millimeter gap can be separated.

6. Discussions
This paper described a method for recovering inner slices

of translucent objects based on multi-frequency pattern pro-
jection. We have shown that inner radiance slices can be
obtained by varying pitches of projection patterns. We also
developed a method for automatically selecting informative
slices via a sparse representation, i.e., determining sparse
coefficients for recovery of the observations. The effective-

(a) Non-smooth painting (b) Relative thickness

65𝜎

85𝜎

Figure 10: Pigment thickness estimation. By selecting
depth-dependent PSFs in a patch-based manner, our method
can estimate the relative thickness of the pigment. σ is an
unknown scattering parameter, which works as scale factor.

ness of the proposed method is shown by several experi-
ments of simulation and real-world translucent objects.

There are future works that we are interested in explor-
ing. First, the result is affected by an opaque object in upper
layers due to that the lower layers are shadowed. In other
words, the lower layer’s reflectance is regarded to be zero,
and as a result, we observe zero-reflectance textures in the
lower layers. While this issue is difficult to directly address
in the proposed scheme, we are interested in resolving this
issue, or at least identify the shadowed regions, by assessing
the correlation between upper and lower textures and their
reflectance. Second, because our method requires multi-
ple images under varying pitches, the measurement takes
approximately ten minutes in our experiments. We are in-
terested in developing a more efficient measurement tech-
nique by exploiting multiplexing in space and wavelength
domains.
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