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Abstract

We envision a future time when wearable cameras (e.g.,
small cameras in glasses or pinned on a shirt collar) are
worn by the masses and record first-person point-of-view
(POV) videos of everyday life. While these cameras can
enable new assistive technologies and novel research chal-
lenges, they also raise serious privacy concerns. For ex-
ample, first-person videos passively recorded by wearable
cameras will necessarily include anyone who comes into the
view of a camera – with or without consent. Motivated by
these benefits and risks, we develop a self-search technique
tailored to first-person POV videos. The key observation
of our work is that the egocentric head motions of a target
person (i.e., the self) are observed both in the POV video of
the target and observer. The motion correlation between the
target person’s video and the observer’s video can then be
used to uniquely identify instances of the self. We incorpo-
rate this feature into our proposed approach that computes
the motion correlation over supervoxel hierarchies to local-
ize target instances in observer videos. Our proposed ap-
proach significantly improves self-search performance over
several well-known face detectors and recognizers. Fur-
thermore, we show how our approach can enable several
practical applications such as privacy filtering, automated
video collection and social group discovery.

1. Introduction
New technologies for image acquisition, such as wear-

able eye glass cameras or lapel cameras, can enable new as-
sistive technologies and novel research challenges but may
also come with latent social consequence. Around the world
hundreds of millions of camera-equipped mobile phones
can be used to capture special moments in life. By the
same token, a mobile phone image containing a GPS po-
sition embedded EXIF tag can also be used to determine
where and when you captured that image and could be used
as a means of violating one’s privacy. Novel wearable cam-
era technologies (e.g., the Google Glass or the Narrative

Figure 1. Robust self-search results. Self instances (yellow ar-
rows) are detected (unmasked regions) despite heavy occlusion
(bottom-left), motion blur (top-right) and extreme pose (bottom-
right), where face recognition fails (green rectangles).

lapel camera) also offer a new paradigm for keeping a visual
record of everyday life in the form of first-person point-of-
view (POV) videos, and can be used to aid human produc-
tivity, such as automatic activity summarization [4, 14, 16]
and assistive systems [15, 25, 27]. But as in the case of mo-
bile phone cameras, wearable cameras also come with hid-
den social implications and the inevitable risk of unintended
use. For example, wearable cameras which passively cap-
ture everyday life will necessarily include videos of people
– with or without consent. Without the proper mechanisms
and technologies to preserve privacy, wearable cameras run
the risk of inadvertently capturing sensitive information.

Keeping in mind both the benefits and risks of using
wearable cameras, we argue that one important technology
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Figure 2. Global motion in the target (A)’s points-of-view video
and local motions in the observer (B)’s video. The local motion
in the target region a is highly correlated with the global motion
compared to that in the non-target region n.

to develop is the ability to automatically search large repos-
itories of first-person POV videos for the videos of a sin-
gle user. Much like ego-surfing enables us to perform an
Internet search with our own name, we believe that self-
search in first-person videos can empower users to monitor
and manage their own personal data. To this end, we de-
velop a video-based self-search technique tailored to first-
person videos. Since the appearance of people in the first-
person videos often comes under heavy occlusions, motion
blur and extreme pose changes (see Fig. 1), we require a
robust approach beyond what can be accomplished by face
recognition alone [13, 35, 36].

In order the account for the high variability in self ap-
pearance in first-person POV videos, we propose to use mo-
tion as our primary feature. The key insight of our proposed
work is that the first-person video of the target user can act
as a unique identifier to enable a target-specific search over
a repository of the first-person videos. We give a concrete
example in Fig. 2. Consider the case where the target (self)
individual A is conversing with another person (which we
call observer B). When A shakes his head, it induces large
global motion (the camera moves from left to right; black
line in Fig. 2) in the video. Now, from the perspective of
observer B, we expect to see the same shake pattern but in
the form of a local motion pattern in the B’s POV video
(we see the target individual A shaking his head at region

a in Fig. 2). This correlation between the global motion of
target A’s video and the local motion of observer B’s video
indicates that these two videos are indeed related. Further-
more, this correlation is expected to increase only in the
target regions. This illustrates the general insight that the
ego-motion of the target is a unique signature which can be
used to localize the self in observer videos.

Based on this insight, we develop a novel motion-
correlation-based approach to search and localize target in-
dividuals from a collection of first-person POV videos. The
algorithm takes as input the target’s POV video, and re-
trieves as output all the instances of that target individual
from observer POV videos. Our algorithm proceeds as fol-
lows. First, a supervoxel hierarchy [32, 33] is generated
over all videos as target candidates. Second, each super-
voxel is evaluated to compute their ‘targetness’ based on the
correlations between local motion patterns inside a super-
voxel and the global motion pattern of target video. Third,
supervised classifier refines the ‘targetness’ scores by tak-
ing into account generic targetness and potential under- or
over-segmentation of supervoxels. The supervoxel labeling
task is posed as a binary-class Bayesian inference problem,
where the likelihood and prior are respectively modeled by
the motion correlation and supervoxel classifier.

Experimental results show that our self-search approach
significantly outperforms baseline face recognizers. Fur-
thermore, to show the potential impact that self-search can
have on assistive technologies, we provide three proof-of-
concept application scenarios: (1) privacy filtering, (2) au-
tomated video collection and (3) social group discovery.

Related Work

The idea of searching for a specific person in images or
video has been addressed in several areas of computer vi-
sion. On such area is the topic of person re-identification
in the context of visual surveillance. An extensive survey
of the field can be found in [11, 29, 31]. One common ap-
proach to re-identification is to utilize visual signatures of
a specific person, such as color and texture, to find specific
individuals in images. Since many approaches presuppose
a surveillance scenario, the features and approaches often
depend on the assumption of a static camera (single POV,
constant background, etc.). With the exception of work us-
ing active cameras [23], re-identification approaches are not
designed to deal with extreme camera motion.

Recent work in the area of egocentric vision focused on
human interactions have utilized person identification as a
feature of their approaches. Many studies have relied on off-
the-shelf face detectors and recognizers [2, 3, 8, 14, 19, 20,
21, 34]. In many of these scenarios, the use of face detection
is justified since people are engaged in conversation and the
first-person POV camera is relatively stable.

Poleg et al. [20] recently proposed a person identification



method based on the correlation of head motions in first-
person videos. Their method relies on people detection to
track the head of each target candidate, making it challeng-
ing to reliably perform the identification when a person is
mobile and significant egomotion is induced. By contrast,
our approach does not require explicit detection but directly
examines the correlations at the supervoxel level.

Another alternative method for identifying specific indi-
viduals is the use of geometric 2D [12, 17] or 3D informa-
tion [18, 19]. An accurate map can be used to compute the
precise location of individuals with wearable cameras and
the location can be used to estimate visibility in other cam-
eras. While these approaches work for local areas (a room
or building) it is not currently feasible to learn maps on a
global scale (an entire country).

To the best of our knowledge, this is the first to address
the topic of self-search in first-person videos with signifi-
cant egomotion, where face recognition and geometric lo-
calization are not applicable (i.e., people with a high vari-
ability of appearances, captured by the cameras with signif-
icant motion, without any restriction on recorded places).

2. Correlation-based Self-search
Given a collection of first-person POV videos, our goal

is to search for a target person (i.e., the self) across many
videos. Specifically, we wish to localize where the target
appears in a collection of first-person POV videos. Here we
consider two types of videos: videos recorded (1) by the
target (target video) and (2) by observers (observer videos).

To perform a search, the target video is used as a unique
identifier to compare against all observer videos. As men-
tioned above, an appearance-based search, such as face
recognition, will fail when the face undergoes heavy occlu-
sion, motion blur or when the face is not frontal parallel
to an observer’s camera. Instead we use the head motion
pattern of the target which is more robust to these types of
distortion. Global motion induced by ego-motion in the tar-
get video can be matched against local motions observed at
candidate regions in observer videos. Instead of generating
the candidates via detection [20], we utilize a more general
supervoxel representation [32, 33]. Matched regions with
high correlation are suggested as target instances.

2.1. Hierarchical Approach to Evaluate Targetness

The main technical challenge of this work arises when
localizing target instances from the correlation evaluated
at each supervoxel of observer videos. Namely, an image
region corresponding to a target person is not necessarily
found as one supervoxel, but likely to be under- or over-
segmented. For example, supervoxels under-segmenting a
target region merge with a part of backgrounds. To solve
this problem, our approach generates a hierarchy of super-
voxels to seek preferable segmentation of targets. While

evaluating the correlation for each supervoxel, we also learn
a discriminative model to consider generic targetness of
supervoxels and avoid under- or over-segmentation of tar-
get regions potentially involved among the hierarchy. We
frame an overall procedure as a binary-class Bayesian in-
ference problem. That is, we aim to refine the likelihood
derived from correlation-based targetness by the prior tar-
getness learned in the discriminative model.

Denote a pixel as x ∈ RW×H×T where W,H, T is the
width, height and temporal length of an observer video.
Each observer video is processed with a hierarchical super-
voxel segmentation algorithm, such that we have a set of
supervoxels V = {v(1), . . . , v(N)} for each video. The su-
pervoxel v(n) is a connected component (a spatiotemporal
region) in the video. Since we retain the entire hierarchical
segmentation tree, each pixel x belongs to a set of super-
voxels V , Vx = {v(i) | x ∈ v(i), v(i) ∈ V}.

We define a binary assignment variable ax for each pixel
in the observer video. Likewise, we define a binary assign-
ment variable av(i) for every supervoxel v(i) in the observer
video. The posterior probability of a pixel assignment given
a target video VG in terms of the supervoxel assignment
variables covering that pixel is defined as:

P (ax|VG) ∝
∏

v(i)∈Vx

P (av(i) | VG) (1)

∝
∏

v(i)∈Vx

P (VG | av(i))P (av(i)). (2)

The goal of our approach is to find the pixel-wise binary
labels that maximize this posterior. The individual super-
voxel posteriors can be further decomposed using Bayes
rule to obtain Eq. (2). We will estimate the likelihood
P (VG | av(i)) using a modified cross correlation score to
deal with head motions in first-person videos (Sec. 2.2).
The prior term P (av(i)) learns various statistics of super-
voxels indicating a trait for generic targetness and incorrect
segmentation (Sec. 2.3).

2.2. Correlation-based Likelihood Computation

We introduce a novel correlation measure between the
global motion patterns in target videos and local motion pat-
terns in observer videos to estimate the likelihood P (VG |
av(i)) in Eq. (2). Let us begin with specific procedures to
obtain those motion patterns. To calculate the global mo-
tion patterns in target videos, we follow [31] and first es-
timate homographies between consecutive frames. These
homographies can generate global motion vectors at each
pixel for every frame (see Appendix A for details). We then
average these vectors for each frame to describe the global
motion pattern by a sequence of two-dimensional (i.e., hor-
izontal and vertical) vectors according to [20].

We also calculate global motion vectors in observer
videos to estimate ‘residual’ local motion vectors. We first



compute dense optical flows such as [7], and then subtract
the global motion vectors from these flows to obtain the lo-
cal motion vectors. Finally, the local motion pattern in each
supervoxel is computed by averaging the local motion vec-
tors for each frame, but this time over regions where the
supervoxel defines. Since vertical motions of target and ob-
server videos are inverted (e.g., head motions by nodding
down appear as upper global motions in target videos), we
inverted vertical elements of local motions.

Formally, let us denote the global motion at frame t as
gt ∈ R2. In addition, we describe the local motion in a
supervoxel at frame t by lt ∈ R2 (the ID of supervoxels is
omitted without loss of generality). We consider the global
and local motion patterns within the interval where the su-
pervoxel defines (i.e., global motion patterns are assumed
to be cropped adaptively). We respectively denote them as
Gb:e = (gb, . . . , ge) and Lb:e = (lb, . . . , le), where b and e
are the beginning and ending frames of supervoxel. In addi-
tion, both Gb:e and Lb:e are assumed to have zero mean by
subtracting their mean value beforehand.

The key observation for our correlation measure is that,
global motions in target videos are usually consistent with
target head motions in first-person videos. Considering this
observation, we compute the correlation between global and
local motions on the subspace spanned by global motions.
Since this subspace is uniquely characterized by the global
motions, projecting local motions onto that effectively elim-
inates many irrelevant local motions. Indeed, first-person
videos recording everyday life involve many motions other
than target head motions. For example, hand gestures of ob-
servers will also induce local motions in their POV videos.

Particularly, we regard gt as a single sample and perform
a principal component analysis on Gb:e. The eigenvector
corresponding to the larger eigenvalue is the subspace in-
dicating the dominant orientation of global motions. We
denote it as s ∈ R2. Then, the cross correlation on the
subspace is computed as follows:

C(Gb:e, Lb:e) =

∑e
t=b g

T
t s · (lt)Ts√∑e

t=b (g
T
t s)

2 ·
√∑e

t=b ((lt)
Ts)2

. (3)

In practice, we need to evaluate videos (i.e., computing
the correlations) in a streaming manner to save memory re-
sources as often done in supervoxel segmentation [33]. To
that end, we first split videos uniformly into the sequence
of short-length intervals. As a result, Lb:e is also split into
Lb1:e1 , . . . , LbQ:eQ where b1 = b, eq + 1 = bq+1, eQ = e.
Then, we evaluate Eq. (3) for each interval and weighted
average them instead of C(Gb:e, Lb:e):

C ′(Gb:e, Lb:e) =
∑
q

eq − bq + 1

e− b+ 1
C(Gbq :eq , Lbq :eq ). (4)

Finally, we scale C ′(Gb:e, Lb:e) into the range of [0, 1] to
deal it with the likelihood in Eq. (2).

2.3. Learning the Prior of Targetness

The prior P (av(i)) in Eq. (2) is introduced to consider
generic targetness of supervoxels while avoiding potential
incorrect segmentation among supervoxel hierarchies, such
as under- or over-segmentation of target regions. This prior
is learned from many pairs of observer videos and corre-
sponding masks annotating target regions. We first extract
positive and negative feature samples respectively from tar-
get and non-target regions, and then train a binary classifier.
This classifier produces a posterior probability of supervox-
els belonging to the target class, i.e., P (av(i)). It also pe-
nalizes supervoxels that have feature values different from
those of positive samples in the training data.

To capture a trait of generic targetness and incorrect seg-
mentation, we extract the following features from supervox-
els and underlying local motions.

Spatiotemporal sizes of supervoxels. The spatial area of
supervoxels averaged over frames as well as their tem-
poral length are used for features. These features indi-
cate extremely short and small supervoxels that over-
segment a target.

Sparseness and frequency of local motions. Local mo-
tions are expected to appear in very limited locations
when the supervoxels under-segment targets. In other
words, the sparseness of (per-pixel) local motions
can be used as a trait for under-segmentation. We
therefore calculate the standard deviation of local
motions for each frame as a measure of sparseness.
The obtained deviations are then averaged over time to
serve as a feature. Furthermore, since people tend to
move frequently as they interact with others, we also
use the standard deviation of local motion patterns,√∑e

t=b ((lt)
Ts)

2, as a cue for generic targetness.

While manual annotations of target people are required
here, this prior is independent of specific people and back-
grounds. Therefore, learning of the prior needs to be carried
out only once, and is not necessary for each target video.

3. Experiments

We first built a new first-person video dataset to evalu-
ate how our approach performs on the self-search in details.
We also evaluated its effectiveness on the CMU-group first-
person video dataset used in [4, 18, 19]. Implementation
details are described in Appendix B, and we would like to
particularly note that our algorithm was able to run on the
videos of size 320x180 (our dataset) and 320x240 (CMU
dataset) while baseline face detectors and recognizers re-
quired full resolution videos (1920x1080 and 1280x960).



Data annotations and evaluations. We manually anno-
tated image regions corresponding to a person’s head at ev-
ery 0.5 second. This is because local motions corresponding
to ego-motion should be observed in a head region. These
annotations also served as a supervised label for learning
the prior P (av(i)). Any classifier will work for the prior
but we used the linear discriminant analysis because it per-
formed the best. Since we evaluated two completely differ-
ent datasets, we used one for training the prior to test the
other. It ensured that any person and scene in test subsets
did not appear in training ones. When evaluating perfor-
mance, we referred to a set of target and observer videos as
session. That is, the session is different if we swap targets
for observers. For each session, we calculated the area un-
der the receiver-operator characteristic curve (AUC) based
on the pixel-wise comparisons between annotations and tar-
getness scores, P (ax = 1 | VG).

3.1. Evaluations on Our Dataset

Our dataset comprises 30 sessions. The number of par-
ticipants wearing the cameras were two or three. These
participants stayed at the same positions but often changed
their poses. Interactions were recorded at 60fps, 30sec, un-
der 4 indoor (I1 - I4) and 4 outdoor scenes (O1 - O4)1.

Fig. 3 visualizes some of our target search results. In
these results, we first searched the woman wearing a pink
shirt from different POVs in I3. Then, we searched the man
wearing a green shirt across scenes I1, O2 and O4. Finally,
we tried to specify different targets in the same frame in O4.
Our method successfully detected targets even if their ap-
pearances were drastically changed due to extreme changes
of poses and unstable illuminations. To visualize target in-
stances (in the 4th column of the figure), we applied Grab-
Cut [22] on pixel-wise targetness to obtain regions with the
maximum targetness.

Tab. 1 describes the AUC scores averaged over each
scene. Several off-the-shelf face detectors and recognizers
served as baselines. We used the mixtures-of-tree based
facial landmark detector [37] (ZR in the table) and the
Haar-cascade face detector [30] (VJ). VJ combined frontal
and profile face models to permit head pose variations.
We also employed face recognizers based on local binary
pattern histograms [1] (VJ+LBPH) and Fisher face [6]
(VJ+FisherFace). These two recognizers learned target
faces from different sessions and ran on the detection results
of VJ. Our approach obviously outperformed these baseline
methods. While face recognizers eliminated incorrect de-
tection of faces, they also failed to recognize target faces
due to the high variability of facial appearances.

In addition, we implemented the following three variants
of our method to see the contribution of each component.

1We captured videos by Panasonic HX-A500. The dataset is available
at http://www.hci.iis.u-tokyo.ac.jp/datasets/.

Observer	  video	 Prior	 Likelihood	  (Plike)	 Posterior	  (Pfull)	

Figure 4. Comparisons between a prior, likelihood Plike and pos-
terior Pfull. Target instances are annotated with yellow arrows.

Observer	  video	 Plike	 Pabs	

Figure 5. Comparisons between subspace cross correlations Plike

and amplitude-based cross correlations Pabs. Target instances are
annotated with yellow arrows.

Pfull. Evaluating P (ax | VG) based on Eq. (2) and Eq. (4).

Plike. Using P (VG | av(i)) instead of P (VG |
av(i))P (av(i)) in Eq. (2) to see how the correlation
likelihood and learned prior work.

Pabs. Using ‖gt‖, ‖lt‖ instead of gT
t s, (lt)

Ts in Plike to see
how the subspace correlation works.

Correlation likelihood and prior. Pfull demon-
strated better performance than Plike on most of the
scenes. Fig. 4 depicts some comparisons between prior∏

v(i)∈Vx P (av(i)), likelihood Plike and posterior targetness
Pfull. The prior was able to roughly eliminate non-target
regions (dark regions in the second column) and sometimes
highlighted target heads (yellow arrows). On the other
hand, the likelihood in the third column localized targets
but often generated false positives in non-target regions
(bottom of the figure). Consequently, the two terms were
complementarily, resulting in better final results (fourth
column). Among the features designed in Sec. 2.3, we
found that the spatial size of supervoxels and the sparseness
of local motions were particularly discriminative.

On the subspace cross correlation. In many cases, the
subspace cross correlation Plike worked effectively com-
pared to the amplitude-based correlation Pabs. As depicted
in the above of Fig. 5, many false-positives are eliminated
in Plike. However, Plike was less robust when targets of-
ten inclined their head (bottom of the figure), violating the
assumption that the cameras were mounted horizontally.
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Figure 3. Target search results on our dataset. [I3] searched the woman wearing a pink shirt from different POVs in the same scene. [I1,
O2, O4] searched the man wearing a green shirt across multiple scenes. [O4] specified different targets in the same frame. Results of
VJ [30], VJ+LBPH [1] and VJ+FisherFace [6] are respectively depicted as green, red and yellow rectangles in the second column.

Table 1. AUC scores averaged over scenes. ZR: Mixtures-of-tree based facial landmark detector [37]. VJ: Haar-cascade face detector [30].
VJ+LBPH: face recognition using local binary pattern histograms [1]. VJ+FisherFace: face recognition using the fisher face [6].

I1 I2 I3 I4 O1 O2 O3 O4 All
(2 persons) (2 persons) (3 persons) (3 persons) (2 persons) (2 persons) (3 persons) (3 persons)

Pfull 0.88 0.89 0.75 0.72 0.91 0.88 0.90 0.70 0.79

ZR [37] 0.57 0.60 0.60 0.64 0.63 0.66 0.69 0.62 0.62
VJ [30] 0.66 0.73 0.66 0.62 0.75 0.77 0.73 0.62 0.67

VJ+LBPH [1] 0.50 0.50 0.51 0.54 0.57 0.55 0.55 0.50 0.52
VJ+FisherFace [6] 0.50 0.50 0.51 0.54 0.50 0.52 0.50 0.51 0.51

Plike 0.85 0.87 0.64 0.61 0.83 0.85 0.81 0.65 0.71
Pabs 0.68 0.75 0.77 0.63 0.73 0.68 0.78 0.62 0.70

3.2. Evaluations on the CMU Dataset

We also evaluated the effectiveness of our approach on
the CMU-group first-person video dataset. 11 participants
formed groups to (1) play pool, (2) play table tennis, (3)
sit on couches to chat and (4) talk to each other at a table.
They changed their poses and positions, and often disap-
peared from observer videos, standing for a more difficult
scenario than our dataset. For 9 videos available for analy-
ses, we used 3861st-5300th frames (30sec, at 48fps), where
two people were involved in playing pool, three for table
tennis, and the remaining four for the chat at the couches.
18 sessions served for evaluation in total.

Tab. 2 describes AUC scores and Fig. 6 visualizes exam-

ple results. Again, our approach significantly improved the
performance over face detectors and recognizers. We also
found that limited performance in Plike and Pabs was due to
the frequent disappearance of targets from observer videos.
It suggests one limitation of correlation-based approaches;
we must observe targets for a certain long time in observer
videos to stably compute correlations as pointed out in [20].

4. Applications
The self-search over a repository of first-person videos

is an important pre-processing in many studies and has a
large potential impact on a variety of practical applications,
including but not limited to privacy protection [20, 26], au-
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Figure 6. Target search results on the CMU dataset. Results of VJ [30], VJ+LBPH [1] and VJ+FisherFace [6] are respectively depicted
as green, red and yellow rectangles in the second column.

Table 2. AUC scores averaged over scenes on the CMU dataset.
ZR: Mixtures-of-tree based facial landmark detector [37]. VJ:
Haar-cascade face detector [30]. VJ+LBPH: face recognition us-
ing local binary pattern histograms [1]. VJ+FisherFace: face
recognition using the fisher face [6]. No face recognition results
were provided for Pool data because each participant was observed
in the only one session.

Pool Table tennis Chat
(2 persons) (3 persons) (4 persons)

Pfull 0.83 0.80 0.79

ZR [37] 0.49 0.50 0.54
VJ [30] 0.52 0.56 0.58

VJ+LBPH [1] - 0.52 0.53
VJ+FisherFace [6] - 0.51 0.53

Plike 0.54 0.47 0.61
Pabs 0.50 0.55 0.64

tomated video summarization [4, 14, 34], and social interac-
tion analyses [3, 8, 18, 19, 21]. While the focus of this paper
is to establish a new correlation-based search, we would like
to suggest several proof-of-concept application scenarios.

Privacy filtering based on the self localization. As men-
tioned in Sec. 1, wearable cameras have a potential risk of
recording videos of people without consent. To preserve
their privacy from unintended recording, one solution is to
localize and blur self instances. Specifically, one can local-

Figure 7. Privacy filtering based on the self localization. Target
instances are annotated with yellow arrows.

ize oneself in other POV videos to blur the regions where
targetness is high (above of Fig. 7). Alternatively, blurring
other than target regions prevents us from violating others’
privacy (bottom of Fig. 7).

Video collector with correlation signatures. While the
prior considers generic targetness, the correlation in the
likelihood serves as powerful signatures of specific targets.
One practical usage of such correlation signatures is to col-
lect video clips including targets from a large pool of first-
person videos. We developed an automated video collector,
which accepted target videos as a query. Example results
on the CMU dataset are shown in Fig. 8. This way, we can
collect the videos of ourselves from various POVs. Correla-
tion signatures were defined as follows: for each video clip,
we first computed median scores of correlation targetness



Target	  video	
Observer	  videos	  

Figure 8. Automated video collector with correlation signatures.
We used target videos as a query, and retrieved 3-best video clips.
Target instances are annotated with yellow arrows. Correct re-
trievals are highlighted by red frames.

Table 3. Accuracies of social group discovery and the estimated
numbers of the groups (the numbers in parentheses. The correct
group number is 3) on the CMU dataset.

Interval (sec) 3 15 30

Proposed 0.66 (3.27) 0.76 (3.00) 0.78 (3.00)
GIST [28] 0.58 (1.72) 0.70 (2.20) 0.69 (2.80)

P (VG | av(i) = 1) for each pixel within a certain temporal
interval (e.g., 15sec), and then calculated their maximum
value within a frame. These signatures enabled us to high-
light target instances appearing at one place for a long time.

Social group discovery based on correlation signatures.
Another usage of correlation signatures is an unsupervised
discovery of social groups from a collection of first-person
videos. We pose this problem as a clustering problem where
affinities between people are determined from the correla-
tion signatures. To estimate the number of clusters (i.e.,
groups) as well as a cluster assignment for each video, we
adopted the affinity propagation algorithm [10]. Tab. 3
shows the accuracies (i.e., ratios of true-positive and true-
negative over all the assignments) and estimated numbers
of groups. We split the CMU dataset into short clips of sev-
eral different length for the evaluation. Since many objects
in a background are different among groups (see Fig. 6), we
implemented an unsupervised scene clustering as a base-
line. Specifically, we used the GIST scene descriptor [28]2

encoded into a bag-of-words representation for features of
the affinity propagation. Our approach improves the perfor-
mance of group discovery regardless of video lengths.

5. Conclusions
This paper introduced a novel correlation-based ap-

proach to the problem of self-search for first-person videos.
Experimental results proved that our search was able to lo-
calize self instances robustly even if well-known face recog-
nizers were unavailable. One limitation of our approach is

2We used the code available at http://lear.inrialpes.fr/software.

that it is not well suited for crowd scenes where many peo-
ple may be moving in the same way (e.g., too much corre-
lation across multiple individuals) and individuals are only
visible for short periods of time (e.g., not enough signal).
Localizing people in these types of videos will require a
richer set of features. We leave this for future work.

Extending the self-search to a huge repository of first-
person videos leads to many novel applications, including
but not limited to what are suggested in Sec. 4. For exam-
ple, searching people across first-person videos recorded at
a variety of places around the world will illuminate their
social activities in life, which have never been pursued by
any visual surveillance. This application also raises new
computer vision problems, such as supervoxel segmentation
on large-scale video streams, camera-pose registration in a
wide-spread area based on self-search and localization, and
visual recognition from first-person multiple POV videos.

A. Motion estimation
To estimate global and local motions in Sec. 2.2, we fol-

lowed the dense trajectory estimation presented in [31], ex-
cept for local motion elimination by people detection. First,
we associated consecutive frames with a homography ma-
trix. Dense optical flows such as [7] thresholded by good-
features-to-track criterion [24] as well as SURF features [5]
produced the points. We adopted the optical flow estima-
tion based on polynomial expansion [7]. To run the method
in a reasonable time, we resized all the video frames into
160x90 (our dataset) and 160x120 (CMU dataset).

B. Implementation details
Supervoxel hierarchies Vx were computed by the stream-

ing version of graph-based hierarchical oversegmenta-
tion [9, 33] implemented in LIBSVX3. To use default pa-
rameters provided with the codes, we resized frames into
320x180 (our dataset) and 320x240 (CMU dataset). We
empirically used the supervoxels in 1, 5, 9, 13-th layers
of 13 layers in total. The interval length for calculat-
ing the correlation C ′(Gb:e, Lb:e) was set to 0.5sec. We
chose to use a sigmoid function to scale the correlation
into the form of likelihood, i.e., P (VG | av(i) = 1) =
1/(1+exp(−C ′(Gb:e, Lb:e))). We also tested several other
options, such as different interval lengths (1sec and 2sec)
and the linear scaling of C ′(Gb:e, Lb:e), but confirmed that
they did not affect overall performance.

3http://www.cse.buffalo.edu/ jcorso/r/supervoxels/
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