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Generic object alignment in terms of landmark points localization under
unconstrained conditions (in-the-wild) is among the most challenging prob-
lems of computer vision. Significant research effort has been channelled
towards developing deformable models with accurate performance and real-
time computational cost. Two of the most well-studied deformable models
are: (i) Pictorial Structures (PS) [4, 5, 9], and (ii) Active Appearance Models
(AAMs) [3, 6]. In this paper, we propose Active Pictorial Structures (APS),
a novel generative deformable model that takes advantage of the strengths
and overcomes the weaknesses of both PS and AAMs. APS achieve state-
of-the-art and close to real-time performance.

PS learn a patch expert for the appearance of each part of an object and
model its shape using spring-like connections between landmarks based on
a tree structure. Specifically, given an object class of n parts (landmarks)
and a tree G = (V,E), the cost function to be optimized is
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T is the vector of landmark coordinates (`i = [xi,yi]
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covariances of the appearance and deformation respectively. Inference is
performed using a dynamic programming algorithm based on distance trans-
form that can find a global minimum without any initialization. However,
PS have two main disadvantages: (i) inference is very slow, and (ii) because
the tree structure restricts too much the range of possible realizable shape
configurations, the global optimum, even though it is the best solution in
the span of the model, it does not always correspond to the shape that best
describes the object in reality.

AAMs are generative models of the shape and appearance of an object.
The shape model is built by applying Principal Component Analysis (PCA)
on a set of aligned shapes. Similarly, the appearance model, which is repre-
sented in a holistic way (i.e. the whole texture is taken into account), is built
by applying PCA on a set of shape-free appearance instances, acquired by
warping the training images into a reference shape. Fitting AAMs involves
solving a non-linear least squares problem and it is typically solved using
a variant of the Gauss-Newton algorithm. AAMs have two disadvantages:
(i) they are not fast enough for real-time applications, and (ii) by applying
PCA the appearance of the object is modelled using a single multivariate
normal distribution, which, as we show, restricts the fitting accuracy.

APS have a similar cost function as the one of PS (Eq. 1), which com-
bines a shape and appearance model, similar to AAMs, along with a de-
formation prior. The biggest difference to both PS and AAMs is the use
of Gaussian Markov Random Field (GMRF). By employing a GMRF, we
make the assumption that the shape, appearance and deformation of the ob-
ject can be modelled using multiple graph-based pairwise normal distribu-
tions between its parts. Specifically, given a graph G = (V,E) and a set of
abstract data vectors xi, i = 1, . . . , |V |, a GMRF formulates the precision
matrix Q (i.e. inverse of covariance Q = Σ

−1) of the data as a block-sparse
matrix that has zeros at the blocks that correspond to disjoint vertexes, i.e.
Qi j = 0, ∀i, j : (vi,v j) /∈ E. Thus, APS consist of:
• A statistical linear shape model, similar to the one of AAMs, that is built
based on an arbitrary undirected graph Gs = (V s,Es). By applying PCA on
the inverse precision matrix of the GMRF, we obtain an orthonormal basis
U and a mean shape s̄. A new shape instance can be generated using the
function S(s,p) = s+Up, where p are the shape parameters.
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• An appearance model that is built based on an arbitrary undirected graph
Ga and comprises of the mean appearance vector ā and the precision matrix
Qa.
• A deformation prior, similar to the deformation part of the PS cost (Eq. 1),
that is based on a directed graph Gd and includes the precision matrix Qd .

APS aim to minimize the cost function
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Inspired by AAMs, this problem is solved using a weighted inverse com-
positional Gauss-Newton optimization algorithm with fixed Jacobian and
Hessian.

There are some important advantages of APS compared to PS and AAMs.
(i) The proposed formulation allows to define any graph structure (not only
tree) between the object’s parts. This means that we can assume dependen-
cies between any pair of landmarks for the shape, appearance and deforma-
tion, as opposed to PS that assumes independence for the appearance and a
tree structure for the deformation. (ii) The sums of the cost function of PS
in Eq. 1 are transformed into matrices multiplications in the cost function of
APS in Eq. 2, which makes the computation much faster, especially in the
case of objects with numerous parts. (iii) The spring-like deformation prior
term of Eq. 2 makes APS much more robust than AAMs which lack such
prior term. (iv) The inverse compositional Gauss-Newton optimization of
APS has a close to real-time cost. Our Python implementation runs at 50ms
per frame and is independent of the employed graph structures (Gs, Ga, Gd).

Our experiments on face alignment show that modelling the appearance
of an object using a GMRF is much more beneficial than using PCA, as
commonly done in the literature. Moreover, the deformation term makes the
model robust in the case of bad initializations by restricting the shape model
to generate only realistic shapes of the object. Finally, we show that APS,
trained using a relatively small amount of training data, can compete and
even surpass the accuracy of four of the most recently proposed state-of-the-
art techniques in face alignment in-the-wild [2, 7, 8, 9] potentially trained
with thousands of training examples. An open-source implementation of
the proposed method is available as part of the Menpo Project [1] in http:
//www.menpo.org/.
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