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Abstract

We propose a single-image super-resolution method
based on the gradient reconstruction. To predict the gra-
dient field, we collect a dictionary of gradient patterns
from an external set of images. We observe that there
are patches representing singular primitive structures (e.g.
a single edge), and non-singular ones (e.g. a triplet of
edges). Based on the fact that singular primitive patches
are more invariant to the scale change (i.e. have less ambi-
guity across different scales), we represent the non-singular
primitives as compositions of singular ones, each of which
is allowed some deformation. Both the input patches and
dictionary elements are decomposed to contain only sin-
gular primitives. The compositional aspect of the model
makes the gradient field more reliable. The deformable as-
pect makes the dictionary more expressive. As shown in our
experimental results, the proposed method outperforms the
state-of-the-art methods.

1. Introduction
Single-image super-resolution is becoming more impor-

tant with the development of high-definition display de-
vices. However, recovering the high-resolution (HR) details
from single low-resolution (LR) image is still challenging.
It is an ill-posed problem because many details are lost dur-
ing the degradation.

Recent works exploit various priors to regularize the
ill-posed problem. Besides the image smoothness prior
used by traditional interpolation methods, more sophisti-
cated priors such as gradient based prior [7, 19] are pro-
posed. But modeling the gradient distribution via a few pa-
rameters is not easy, because the local image structure is far
more complicated than the parametric representation.

Alternatively, example-based methods offer a good way
to represent the local structure by patches. These methods
either exploit the self-repeated example patches [4, 8, 11] or
estimate the high-resolution details from the high/low reso-
lution pairs [2, 4, 9, 13, 15, 21, 24, 25, 26, 28, 30]. Recent
work [4, 6] tries to utilize deep networks to learn the inher-
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Figure 1. Singular and Non-singular cases approached by sparse
coding [24], deformable patches [30] and the proposed method.
The HR estimation and the components shown to illustrate that
sparse coding and deformable patches work better on singular case
than non-singular case. By the proposed deformable composi-
tional model, the non-singular patches can be well reconstructed.

ent relationship between the HR/LR patch pairs.
The ambiguity of HR/LR patch pairs is a common prob-

lem in the example-based methods. Different HR patches
may be corresponded to similar LR patches. To address this
problem, Freeman et al. [9] consider local consistency be-
tween adjacent patches and use Markov Random Fields to
find the appropriate candidates from the ambiguous patches.
Later methods try to learn the best linear combination of
the ambiguous patterns through sparse coding dictionary
[24, 25], Deep Network Cascade (DNC) [4] or Convolu-
tions Neural Network(CNN) [6]. Recent work by Zhu et
al. [30] also suggest that deformable patches can relax the
problem.

Singular structures such as single edges and corners
are more robust to scale change, as pointed out in some
works [1, 11, 23]. In other words they are less ambigu-
ous across different scales. Also, the non-singular struc-
tures are more likely to be lost during the degradation. Most
methods work better on singular structures. Figure 1 illus-
trates two broad method categories (sparse coding [24] and
deformable patches [30]), showing the HR estimation and
their components (linear [25] and weighed [30] combina-
tions ). All of them work well on singular structures. But



for non-singular case, the sparse coding method tends to
select more complex patterns, leading to the blurred HR es-
timation. And for deformable patches method, it is hard to
find appropriate candidates for the non-singular structure.
This inspires us to decompose the non-singular structures
to singular structures. We also exploit the approach of [30]
to make the dictionary deformable and, thus, more expres-
sive. We apply the deformations separately to each com-
ponent of the compositions. Note that we do not focus on
the T-junction structure but on the separable ones e.g. the
disjoint edges. For simplicity, we treat the non-separable T-
junction structures in the same way we treat singular struc-
tures. This approximation works well, as the structure is
corrected when all the adjacent patches are averaged.

This paper proposes a novel deformable compositional
model for single-image super-resolution. Both the patch
in the LR input image and the dictionary patch are decom-
posed to singular structures by using masks. For each input
LR patch containing a singular structure, its best match in
the dictionary is deformed to recover the gradient field. Fi-
nally the HR gradient information is integrated into the LR
input image. In sum, our main contributions are:

1. We propose a deformable compositional model to
decompose the non-singular structures into singular
structures. Masks are calculated to identify the domi-
nating region of each gradient ridge.

2. We extend the deformable patches based model to the
gradient domain, which contributes to the HR recon-
struction with sharp edges.

2. Related Work
Single super-resolution methods can be summarized into

two categories: the gradient statistical prior based methods
[7, 19, 20], and patch example based methods [2, 4, 6, 8, 9,
11, 15, 25, 23, 27, 30].

The gradient statistical prior based methods [7, 19, 20]
are parametric methods which try to model the gradient
transfer function from LR to HR images. Based on the
fact that sharp edges in the image correspond to concen-
trated gradients along the edge, Fattal et al. [7] model the
edge profile distribution. Sun et al. [19] exploit the gradi-
ent transformation from HR image to LR image. And Tai et
al. [20] recover the fine gradient using the user-supplied ex-
emplar texture. Nevertheless, it is hard to model the image
with a few parameters. Therefore the reconstructed images
are usually over-sharped or suffer from false artifacts due
to the incorrect gradient estimation. Our method follows a
similar way to recover the image gradient, and we exploit
the useful information from the external gradient patterns,
thus being more expressive than the parameter-controlled
gradient prior methods.

Patch based methods became popular for the simplic-
ity to represent the local structure. Patches or epitomes
have been successfully used in image labeling and classifi-
cation [3, 16]. Patches’ self-similar properties are exploited
in the work [8, 11, 14, 29]. But in this paper we focus on the
external example based methods, in which a universal set is
used to provide numerous texture patterns for HR details
prediction. As in the seminal work of Freeman et al. [9],
Markov Random Field is employed to select the appropri-
ate HR patch from a bundle of candidates. Chan et al. [2]
propose a Neighbor Embedding method inspired by LLE
algorithm in manifold learning, followed by extensions of
this work [10, 28]. Sparse coding methods [24, 25] exploit
the sparsity property in the patch representation. The ba-
sic assumption is that HR/LR patches share the coefficients
when they are sparsely coded by HR/LR dictionary. The
dictionary is usually trained to be compact to represent the
HR patterns. He et al. [13] extend the work by allowing a
mapping function between HR and LR sparse coefficients.
Timeofte et al. [21] also propose an improved variant of
Anchored Neighborhood Regression (ANR) method. Nev-
ertheless, these methods use patches as a fixed vector. This
requires an extremely large dictionary to cover the input
patch structure or linear combination components. To re-
lax the problem, Zhu et al. [30] allow a patch deformation,
thus making the dictionary more expressive.

Recently, deep learning showed its power to learn hierar-
chical representations of high dimensional data, and it is al-
ready being used in example based super-resolution. Cui et
al. [4] follow the gradual upscaling strategy from [8, 11] and
apply the Collaborative Local Auto-encoder (CLA) to intro-
duce the information of the external data in each step. Thus,
they build a deep network cascade reconstruction structure.
And Dong et al. [6] extend the sparse coding method to a
convolutional neural network(CNN) learning structure with
different mapping layers. But these methods seldom impose
any gradient constraint on the desired image. So there is still
a blurring effect that could be improved. Moreover, none of
these method exploits what kind of structures is useful for
super-resolution. Instead, they put all the patches into the
learning or reconstruction process.

There are also related work on image enhancement [12,
17, 18]. These methods tend to sharpen the discontinuous
edges independently. Thus the results are not so reasonable
to human perception. The drawback is mentioned in the
literature [19].

In our work, we applied deformable patch based method
[30] to make the gradient pattern dictionary more expres-
sive. By the decomposition into singular primitive struc-
tures, the deformable patch method is more robust, which
is a big improvement over the deformable patch based
method, as shown in our experiments.
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Figure 2. Flow chart of the HR gradient field estimation. The input gradient ridge image is obtained from the input gradient field. For a
pixel at position p (marked with a red cross), we first generate the mask from the dominating gradient ridge (orange part). Then the LR
gradient is integrated with the mask to extract the singular part. We find the best candidate in the dictionary (marked by red box) and the
corresponding masks. Finally the masked HR gradient patches are deformed for the final estimation. Note that here we simply show the
gradient magnitude for illustration, but actually the x and y components are calculated separately and simultaneously, for both the input
images and the dictionary elements. You may see the details in the corresponding section.

3. Deformable Gradient Compositional Model
Previous example based methods do not work well on

the non-singular patterns (See Figure 1). In this section,
we introduce the Gradient Compositional Model, aiming to
focus on each singular part of the non-singular patterns by
adding masks. We also allow the deformation for the HR
patches to make them fit the LR input flexibly. The flow
chart is shown in Figure 2. In Section 3.1 we overview our
proposed model and we will discuss the details in the sub-
sequent subsections.

3.1. Gradient Compositional Model

To decompose the patches into non-singular structures,
we start from patches centered at the gradient ridge points
instead of following the raster-scan strategy. A gradient
ridge point is the local maximum along the gradient de-
scending path. This is equivalent to the zero crossing map
in the work [19]. We will elaborate on how to get gradient
ridges in Section 3.2.

First of all, for each gradient ridge position p = (x, y),
we first extract the patches centering at (x, y) byRp and in-
tegrate it with the mask Mp,Z . Given the LR dictionary Dl

and the LR gradient dictionary Dgl = (Dxl, Dyl) (the raw
gradient dictionary elements and the masks are displayed
separately in Figure 2), we choose the best element from the
corresponding HR dictionary Dh by function δ. After the
deformation φ and the contrast adjustment by ηp,R>

p maps
the patch back to the position p within the reconstructed
image.

∑
p∈Z R

>
p M

>
p,Xl

Mp,Xl
Rp counts the masks accu-

mulated on each pixel. In other words, our method averages
all the overlapping masked dictionary elements. As a sum-
mary, suppose we have an input LR image Xl and its gradi-
ent ∇Xl. The predicted HR gradient ∇X̃h is reconstructed

as the following equation:

∇X̃h =

∑
p∈Z R

>
p M

>
p,Z · ηp · φ(Dhδ(Dgl,Mp,ZRp∇Xl))∑

p∈Z R
>
p M

>
p,ZMp,ZRp

(1)
The symbols are the following:
Z: the gradient ridges of the entire image i.e. the local

maximum along the gradient direction (See Section 3.2).
Rp: patch extraction operator that extracts a patch cen-

tered at the position p = (x, y).
R>

p : the inverse operation of Rp that maps the patch to
the position p of the constructed image.
Mp,Z : the patch mask generated from the gradient ridge

point, centered at p;
δ: the indicative function that chooses the best match

between the input LR patch and LR gradient dictionary (See
Section 3.4).
φ: the deformation function elaborated in Section 3.5.
ηp: the gradient contrast adjustment ratio between the

LR patch and corresponding HR patch with the form ηp =
αV ar(Mp,ZRp|∇Xl|), where |∇Xl| denotes the gradient
magnitude. By the global parameter α, ηp we adjust the
contrast of the normalized output of the patch deformation
stage. The setting of the global parameter α is discussed in
the experiments.
Dl andDh: the LR and HR dictionary respectively. Note

that the corresponding gradient dictionary is also used in
edge smoothness estimation (Section 3.3) and patch match-
ing (Section 3.4). More details can be found in the experi-
ments Section 5.1. Note that we use masked patches in Eqn.
(1), even though we only display the raw gradient dictionary
elements and the masks separately in Figure 2.



(a) Find the gradient ridges (b) Find the mask

Figure 3. (a) Gradient ridges searching strategy, for arbitrary pixels
p (big red dot), the previous and next positions (small red dots) are
found along and against the gradient direction (blue arrow). (b)
Mask marking strategy. The red dots denote the gradient ridge
pixels. The green dots indicate the searching path from the corner
pixels. Blue arrows are gradient directions of each green point. In
this case, starting from the top left, the path finally reaches a red
dot. So they should be marked as mask pixels.

3.2. Gradient Ridges and Mask Generation

In this section, we describe how to obtain the gradient
ridge pixels Z from an input image X . Suppose we have a
gradient field in the form∇X = m ·

−→
N , wherem is the gra-

dient magnitude and
−→
N is the gradient direction. Along the

gradient direction, we can find the next sub-pixel position
with the gradient magnitudemnext

p determined by linear in-
terpolation of the neighbors. Similarly, against the gradient
direction, we find the previous position and gradient magni-
tudempre

p . Ifmp is the maximum among them, it is marked
as a gradient ridge pixel (Figure 3(a)). The same strategy is
used in [19] for finding the edge pixel. The following equa-
tion shows how to get the gradient ridges Zp:

Zp =

{
1 mp > mpre

p &mp > mnext
p

0 otherwise
(2)

Given a patch with the center at a gradient ridge pixel p,
first we find the connected ridge pixels that cover the center
pixel by 8-connected searching, i.e. the dominating ridge
(mark in orange color in Figure 2). Next, we search for
the mask to delimit the dominating area of the dominating
ridge. The dominating area starts from the gradient ridge
and ends at the gradient magnitude local minimum along
the edge direction. Therefore we mark all the dominating
ridge pixels as mask pixels. And for each pixel within the
patch, we search for the path along the increasing gradi-
ent magnitude direction, i.e. against the gradient direction
(∂m/∂x, ∂m/∂y). Here we just choose the next pixel by
the number of ∂m/∂x and ∂m/∂y to make the path go
through every pixel. That is to say, if |∂m/∂x| > |∂m/∂y|,
there should be xnext = x + sign(∂m/∂x) for a fixed y.
If the path reaches a dominating ridge pixel, all the pixels
on the path are marked as mask pixels. Otherwise they will
not be marked if the path reaches the border or loops on a

single pixel. See Figure 3(b).
In this paper, we use two kinds of patches, the gradient

patches and the intensity patches. When integrated to the
gradient patches, the gradient pixels covered by the mask
are kept and the rest are set to 0. But when we add the
mask to the intensity patches, we adopt a different strategy.
For the unmasked pixels within the intensity patch, we fill
them from the boundary of the masks iteratively. Then for
each unmasked pixel, if 3 masked pixels are found with it 8-
connected area, the unmasked pixel is assigned the average
of these pixels and set as a masked pixels. This processing
is repeated until all the pixels are masked.

3.3. Edge Smoothness

Gradient ridges describe the positions and shapes of the
singular structures. But they do not keep the edge smooth-
ness information, which is very important for patch match-
ing (Section 3.4). It helps to find the HR patches with appro-
priate edge width. Obviously, we can not expect all recon-
structed edges to be as sharp as possible. Instead, it should
be adaptive to the input LR gradient.

We estimate the edge smoothness as weighted combined
distance. The weight is defined as the normalized gradient
magnitudemp within the mask area. Thus the edge smooth-
ness has the form of the variance of the edge profile (as in
[19]). Within a patch (HR or LR), for the pixel located at
position p, it corresponds to a ridge pixel pz on the search-
ing path, accordingly with Section 3.2. The smoothness S
is formulated by the weighted combination of the distance
between p and pz:

S =

∑
p∈M (p− pz)2mp∑

p∈M mp
(3)

where M denotes the masks within the patch, mp is the
gradient magnitude on pixel p. Since we integrate on all the
masked pixels, the smoothness is a scalar for each patch.

3.4. Patch Matching

Patch matching is an essential stage in example based
super-resolution methods when HR/LR paired dictionary is
employed. In the literature [9], MRF is utilized for the best
candidate selection. Also the linear combination methods
(e.g. sparse coding [13, 21, 24], neighbor embedding [2, 28]
et al.) and deformable patch based methods [30] involve the
patch selection or matching step. In this paper, we match the
input LR gradient patch with the LR part of the dictionary,
aiming to find the indicative function δ, which indicates the
single HR patch that are suitable for deformation instead of
the exact version. We consider two principles:

1. The patch with more similar edge orientation is more
likely to be selected. The orientation can be repre-
sented by the histogram of gradient (HOG) [5] of the
masked intensity patches.



2. Edge smoothness in Section 3.3 is considered to select
the dictionary element with similar LR edge width to
the input LR patches:

Based on the above, given the input masked LR gradient
patch Pgl = Mp,ZRp∇Xl, first we find its corresponding
masked intensity patch Pl = Mp,ZRpXl. Meanwhile LR
intensity dictionary Dl is corresponded to the gradient dic-
tionary Dgl. Thus the indicative function δ is defined as:

arg min
δ

||Hog(Pl)−Hog(Dl)δ||2 + λ|S(Pgl)− S(Dgl)δ|2

(4)
where Hog(·) is the HOG feature descriptor. S(·) is the
patch smoothness described in Section 3.3. λ is the balance
parameter. In our experiments, we set λ = 1.

3.5. Patch Deformation

Recent work of deformable patches [30] shows that by
allowing the patch deformation, the dictionary can be made
more flexible and expressive. They assume that during the
degradation, the HR/LR pairs share the deformation field
instead of the sparse linear combination coefficients as [13,
25] do.

In this paper, we apply the deformable patches on the
intensity patches rather than the gradient patches. The rea-
son is that the basis of the deformation in [30] is a Tay-
lor expansion which is satisfied when the patch is smooth
and continuous. For the gradient patches case, they do not
maintain such a good continuous property, which may lead
to large errors. Therefore the deformation field estimation
stage does not work well with the discrete gradient patches.

In the approach we propose, first we add the mask to the
intensity patches to make them contain a single edge as de-
scribed in Section 3.2. The dictionary elements are masked
in the same way. After adding the masks, both the input
LR patch and the selected HR candidate contain singular
structures. Then we minimize the following energy func-
tion to obtain the deformation field u (along x direction)
and v (along y direction):

E = ||Bl +Blx ◦ u+Bly ◦ v − Pl||2 + ψ(u, v) (5)

Under the assumption that the LR/HR patches share the de-
formation field, the warping function φ has the form:

φ(Bh) = ∇(Bh +Bhx ◦ u+Bhy ◦ v), (6)

where Pl is the masked input intensity patch. Bh = Dhδ
is the selected HR candidate for input LR patch. Similarly
Bl = Dlδ. δ is defined in Section 3.4. Blx and Bly are the
gradients along x and y respectively, Bhx and Bhy is the
same for HR patches. Operator ◦ denotes the point-wise
multiplication. We also use ψ(u, v) as the second-order
derivative constraint as [30] does. Note that the final φ is
normalized in Eqn. (1). So ηp is introduced to adjust the
contrast.

4. Super-resolution Reconstruction Model
In the previous section we presented the deformable gra-

dient compositional model. By focusing on the single edge
in each patch covered by its mask, we can obtain more re-
liable gradient estimation. These gradient patches are in-
tegrated on ∇X̃h as in Eq.(1) (∇xX̃h and ∇yX̃h are pro-
cessed separately). In this section, we impose the integrated
gradient prior ∇X̃h on the given LR image Xl to recover
the HR details. The same strategy is employed by the work
[19, 20] The following energy function is minimized by en-
forcing the constraint in both intensity domain and gradient
domain:

E(Xh|Xl,∇X̃h) = ||SHXh−Xl||2+β||∇Xh−∇X̃h||2,
(7)

where S is a down-sampling operator, H is a blurring oper-
ator. β is a parameter that balances the constraints between
the intensity domain and the gradient domain. In this paper,
we choose β = 0.3. The above energy function is quadratic
and convex, so the global minimum can be obtained by gra-
dient decent:

Xt+1
h =Xt

h − τ [(H>S>SHXh −H>S>Xl)

− β(div(∇Xh)− div(∇X̃h))]
(8)

where t is the iteration number and τ is the iteration step,
which we set to τ = 0.1. We have tried different value
ranging in [0, 1] for β and τ , but the results remain sta-
ble. div(∇Xh) denotes the divergence of∇Xh via the form
div(∇Xh) = ∂2Xh/∂x

2 + ∂2Xh/∂y
2, which can be im-

plemented easily using the Laplace operator. In this paper,
we choose CNN super-resolution [6] result for the X0 ini-
tialization.

5. Experimental Results
In this section, we evaluate our algorithm on the test ex-

amples commonly used in the super-resolution literature.
We evaluate the deformable gradient compositional model
and discuss its contribution over the deformable patches.

5.1. Dictionary and Experiments Setting

Dictionary Preparation In our experiment, the dictio-
nary is generated from the Berkeley Segmentation Dataset
500 [12] by randomly selecting enormous patch pairs as in
[9, 13, 23, 25, 30].

For each HR image Ih in the dataset, we calculate the
LR version Il = H>S>SHIh. Here H>S> is an upscal-
ing process, i.e. we use the upscaled version of the low-
resolution image. Thus, the patch size of the LR and HR
patches can be fixed as the same. The literature [23, 25, 30]
adopts the same strategy. H>S> also appears when itera-
tively updating Xh in Eq. (8). In this paper, we use bicubic
interpolation to implement the upscaling.
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Figure 4. PSNR and SSIM for different α. Left: PSNR on gra-
dient magnitude. Middle: Final PSNR increment w.r.t. the base
value baby (34.07dB), bird (33.78dB), butterfly (27.23dB), head
(33.22dB), woman (30.11dB). Right: Final SSIM increment w.r.t
the base value baby (0.9711), bird (0.9348), butterfly (0.8899),
head (0.8169), woman (0.9073).

Since our deformable gradient compositional model in-
volves the gradient patches, the corresponding gradient im-
ages ∇Ih = (∇xIh,∇yIh), ∇Il = (∇xIl,∇yIl) are gen-
erated. Then, we randomly select the LR patches that are
centered at a LR gradient ridge pixels. From the same po-
sition, all the 2 intensity patches and 4 gradient patches are
extracted as one set {Dh, Dl, Dxh

, Dxl
, Dyh

, Dyl
}. All of

the dictionary patches are integrated with their correspond-
ing masks.

Parameter Setting In the experiments, the patch size is
7 × 7 and the upscale factor is 3×. Initially, we randomly
select 30000 patch sets (including intensity patches and cor-
responding gradient patches). In the reconstruction step, we
set β = 0.3 and τ = 0.1. Finally, we incorporate the non-
local method [1] for post processing as work [13, 30] do.
For color images, super-resolution is done on Y channel in
the YCbCr color space, and the other two channels are up-
scaled by bicubic interpolation. In Section 5.2 and 5.3 we
evaluate the performance in term of PSNR and SSIM [22],
High PSNR/SSIM indicate good performance. For each im-
age, we down-sample the ground truth image first and up-
scale it by super-resolution methods. PSNR and SSIM are
calculated between the result and the ground truth. 5-pixel
borders are excluded because we do not process the border
pixels.

Testing Images Our performance evaluation is based on
the image test Set 5 and Set 14. These images are also the
main test sets in the literature [6, 21, 26]. In the parameter
chosen and effectiveness section, five images that compose
Set 5 are used. And in the final super-resolution evaluation
section, all the 19 images from Set 5 and 14 are involved.

5.2. Contrast adjustment parameter α

In this section, we exploit how to choose the global con-
trast adjustment parameter α in Section 3.1. The final per-
formance is sensitive to this parameter. Here we test the
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Figure 5. The effectiveness evaluation of the patch deformation
and the gradient composition.

possible choices between 0.2 and 5.0 with a 0.2 step. These
5 test images are from Set 5. The other parameter is set as
in the previous section. PSNR on the gradient magnitude
is displayed in Figure 4 (Left), which represents the gradi-
ent reconstruction error. Figure 4 (Middle and Right) show
PSNR/SSIM of the final results in the form of increment
with regard to the base value because of the different range
for different images. The base values are the minimums of
the 25 points on each curve. Different curves represent the
performance on each image. Thus they are not comparable.
The trend is only observed on a single curve.

In Figure 4 (Left), a peak at around α = 1.2 can be ob-
served. Meanwhile at the final PSNR/SSIM curves (Figure
4 Middle and Right) show similar trends at α = 1.2. For
each curve, when α is small (< 1.2), PSNR/SSIM decrease
as α decreases, but they remain higher than the case of big
α (> 4). This is reasonable. For a small α, the gradient
constraint suppress the magnitude of the gradient, which is
equivalent to the smoothness prior. Meanwhile, Eqn. (7)
can be regarded as a back-projection form with smoothness
prior. This process can also help improve PSNR perfor-
mance, because the error term guarantees the fidelity to the
input LR image and the smoothness reduces the possible
error due to misaligned edges. However, in these cases the
edges are usually blurred and the gradient constraint is not
imposed. In our observation, butterfly image is an excep-
tion due to its different gradient statistics (i.e. more edges
than others). But at α = 1.2 it still has good PSNR/SSIM.
Therefore we choose α = 1.2 as the universal setting.

5.3. Effectiveness of the model

We conduct experiments to evaluate the effectiveness of
the proposed deformable compositional model. The 5 im-
ages in Set 5 are used for evaluation. First, we ignore
the gradient composition i.e. set all of the masks to be all-
1 patch for both the input patch and the dictionary. The
patch matching also involves only the unmasked patches.
And next we make the code go through the compositional
model, but without deformation. Instead, the top candidate
during patch matching is directly used. The proposed De-
formable Compositional Model results are added for com-



Figure 6. The gradient map generated by deformation only, com-
position only and the proposed decompositions model (from left
to right). The top images are from the head image in Set 5 and the
bottom ones are from the butterfly image.

parison. Figure 5 displays the PSNR performance on the
3 cases. From the figure, we can see that the deformation
makes a little more contribution than the compositions, but
not much. Both of them contribute to the final performance.

Figure 6 displays two example parts from the test im-
ages. For the deformation only and composition only cases,
the reconstructed gradient suffers from the blurring around
the edges. In the final deformable gradient compositional
model result, the edge is more concentrated, avoiding the
blur and sticking edges.

5.4. Super-resolution results

To evaluate the performance, in this section, we choose
19 test examples (Set 5 and Set 14) used in the previous lit-
erature [6, 21, 26]. We will show the PSNR/SSIM quantita-
tive results and visual quality. More specifically, Four cate-
gories of methods are selected as the competitors, including
Gradient Profile Prior (GPP [19]), dictionary learning meth-
ods (i.e. Sparse Coding [25], and Anchored Neighborhood
Regression ANR [21]), Deformable Patches (DPSR [30])
as well as the deep networks(i.e. Convolutional Neural Net-
work CNN [6] and Deep Network Cascade DNC [4]). Table
1 shows the PSNR and SSIM results of the competitors and
our method. Overall, our method outperforms the state-of-
the-art methods. We outperform the other methods on 14
of total 19 images in PSNR. And we achieve higher SSIM
in 16 of all the 19 cases due to more appropriate gradient
constraint. Figure 8 displays some parts of the images and
the corresponding gradient magnitude image. This part is
chosen to show the super-resolution results on non-singular
structure patterns. Visually, in the part of the butterfly, both
the dictionary learning based method [21, 25] and the de-
formable patch method [30] suffer seriously from the bicu-
bic jag artifact, due to the linear or weighted combination
of the dictionary elements. The Deep learning method [6]
shows smoother results than the others due to the non-linear
mapping between the layers, but it fails to maintain sharp
edges around the non-singular areas since they do not con-
sider the gradient constraints as [19] and our method does.
On the contrary, [19] can generate sharp edges, but the gra-

Figure 7. We show more comparisons with the state-of-the-art
methods, 3×. For each group, from left to right, from top to bot-
tom: DPSR [30], DNC [4], CNN [6], and our method. Our method
performs better with sharp edges. Please zoom in for better view.

dient field is not natural because it is hard to model the com-
plex edge composition using a few parameters. Figure 7
shows more results on three images. Four recent methods
are compared. Overall, our method can generate better nat-
ural gradient field and sharp images with the help of the
gradient deformable compositional model.

6. Conclusion
In this paper, we propose a Deformable Gradient Com-

positional model to represent the non-singular primitives as
compositions of singular ones, each of which is allowed
some deformation. The compositional aspect makes the
gradient field more reliable. The deformation aspect makes
the dictionary more expressive. The experiments on Set 5
and Set 14 show that our method outperforms the state-of-
the-art methods. In our future work we plan to address the
decomposition problem for the joint edges or T-junctions
which is not explicitly handled in our work.



Table 1. Performance in PSNR and SSIM on the 19 images in Set 5 and Set 14. Upscale factor: 3×

Images
GPP[19] SCSR[25] ANR[21] DPSR[30] SRCNN[6] DNC[4] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

baboon 23.41 0.8470 23.57 0.8529 23.56 0.8514 23.58 0.8533 23.59 0.8528 23.58 0.8546 23.63 0.8565
baby 34.38 0.9716 35.15 0.9748 35.07 0.9745 35.17 0.9751 34.88 0.9733 34.92 0.9749 35.24 0.9755

barbara 26.59 0.8970 26.80 0.9007 26.65 0.8974 26.80 0.9005 26.60 0.8962 26.60 0.8975 26.73 0.8995
bird 33.56 0.9335 34.83 0.9492 34.63 0.9479 34.86 0.9496 34.89 0.9466 34.99 0.9496 35.28 0.9527

bridge 24.83 0.8987 25.09 0.9044 25.02 0.9021 25.11 0.9049 25.07 0.9027 25.18 0.9043 25.20 0.9068
butterfly 26.29 0.8820 26.15 0.8789 25.92 0.8726 26.60 0.8878 27.61 0.9007 27.08 0.9009 27.77 0.9088

coastguard 27.04 0.6553 27.25 0.6645 27.14 0.6561 27.21 0.6640 27.17 0.6559 27.14 0.6608 27.23 0.6643
comic 23.85 0.7562 24.04 0.7649 23.98 0.7587 24.04 0.7646 24.31 0.7749 24.20 0.7674 24.41 0.7814
face 33.06 0.8120 33.53 0.8230 33.55 0.8219 33.58 0.8243 33.48 0.8185 33.57 0.8238 33.66 0.8256

flowers 28.21 0.8327 28.53 0.8429 28.42 0.8390 28.61 0.8444 28.88 0.8445 28.87 0.8488 29.06 0.8525
foreman 33.45 0.9269 33.75 0.9320 33.59 0.9309 33.98 0.9337 33.95 0.9309 34.42 0.9370 34.42 0.9376

head 33.16 0.8141 33.58 0.8244 33.57 0.8227 33.61 0.8251 33.44 0.8181 33.65 0.8252 33.64 0.8256
lena 32.45 0.9639 33.09 0.9674 33.02 0.9672 33.17 0.9678 33.30 0.9676 33.28 0.9684 33.48 0.9694
man 27.73 0.9327 27.97 0.9367 27.89 0.9353 28.00 0.9368 28.12 0.9367 28.20 0.9395 28.25 0.9399

monarch 31.10 0.9791 31.22 0.9809 31.03 0.9806 31.57 0.9816 32.28 0.9825 31.93 0.9825 32.47 0.9837
pepper 33.56 0.9752 34.10 0.9778 33.83 0.9770 34.12 0.9777 34.27 0.9771 34.50 0.9784 34.51 0.9788
ppt3 24.71 0.9616 25.09 0.9641 24.87 0.9614 25.14 0.9644 25.80 0.9673 26.15 0.9732 25.83 0.9694

woman 29.83 0.9061 30.52 0.9187 30.36 0.9161 30.50 0.9183 30.89 0.9201 31.23 0.9261 31.17 0.9264
zebra 28.05 0.8331 28.68 0.8500 28.38 0.8427 28.69 0.8508 28.77 0.8456 29.03 0.8494 29.28 0.8554

Average 29.22 0.8831 29.63 0.8899 29.50 0.8871 29.70 0.8908 29.86 0.8901 29.92 0.8927 30.07 0.8952

GPP[19] SCSR[25] ANR[21] DPSR[30] SRCNN[6] DNC[4] Proposed
Figure 8. Results on some non-singular parts in Set 5 and Set 14, the corresponding gradient field is displayed. Upscale factor: 3×. Image
from top to bottom: butterfly, barbara and comic. Please zoom in for better view.
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