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In this paper, we address the problem of long-term visual tracking where the
target objects undergo significant appearance variation due to deformation,
abrupt motion, heavy occlusion and out-of-view. Our approach builds on
two major observations based on prior work. First, it is important to model
the temporal relationship of appearance consisting of a target object and its
context as there is little change between two consecutive frames. Second,
it is critical to enhance the detection module of a long-term tracker to (i)
estimate the scale change and (ii) re-detect the object in case of tracking
failure when the long-term occlusion or out-of-view occur.

‘We decompose the task of tracking into translation and scale estimation
of objects. We show that the correlation between temporal context consider-
ably improves the accuracy and reliability for translation estimation, and it
is effective to learn the discriminative correlation filters from the most con-
fident frames to estimate the scale change. A typical tracker [2, 3, 9] based
on correlation filters models the appearance of a target object using a filter w
trained on an image patch x of M x N pixels, where all the circular shifts of
X, (m,n) € {0,1,...,M—1} x{0,1,...,N — 1}, are generated as training
samples with Gaussian function label y(m,n), i.e.,

w = argmin ¥ |0 (Xun) - W — y(m,n)[* + A |w|*, (1)

W mpn
where ¢ denotes the mapping to a kernel space and A is a regularization
parameter (A > 0). Since the label y(m,n) is not binary, the learned filter
w contains the coefficients of a Gaussian ridge regression [6] rather than a
binary classifier. Using the fast Fourier transformation (FFT) to compute the
correlation, this objective function is minimized as w = }.,,, , a(m, 1) ¢ (Xp,n )
and the coefficient a is defined by

F(y)
F(0(Xmn) - 9(x)) + 4~

where F denotes the discrete Fourier operator and y = {y(m,n)|(m,n) €
{0,1,....M—1} x{0,1,...,N — 1}} The tracking task is carried out on
an image patch z in the new frame with the search window size M x N
by computing the response map as § = F ' (A® F(¢(z) - ¢(R))), where &
denotes the learned target appearance model and ® is the Hadamard product.
Therefore, the new position of target is detected by searching for the location
of the maximal value of §.

Differently from prior work, we train two regression models based on
correlation filters from one single frame. As shown in Fig. 1, the temporal
context model R, takes both the target and surrounding context into account,
since this information remains temporally stable and useful to discriminate
the target from the background in the case of occlusion [9]. It is important
for the regression model R, to be adaptive to estimate the translation when
the target undergoes occlusion, deformation, and abrupt motion. The R,
model is thus updated with a learning rate o frame by frame as
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A =(1—a)A ' 4 adAl, (3)
where 7 is the index of the current frame.

We learn another discriminative regression model R; from the most
reliable tracked targets. Specifically, we use the maximal value of § to
determine the confidence of tracking results. To maintain the model sta-
bility, we use a pre-defined threshold 7, and only update R; using (3) if
max(§) > T,. Note that there are no cosine spatial weights for model R,
in the feature space (See Fig. 1). During tracking, we construct a target
pyramid around the estimated translation location for scale estimation. Let
P x Q be the target size in a test frame and N indicate the number of scales
S={d"ln= L7¥J, LfNT% Sy L%J} For each s € S, we extract an
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Figure 1: Two regression models learned from a single frame. The model
R, exploits the temporal correlation of target and surrounding context while
R; only models target appearance. To train the model R, a layer of spatial
weights are added on the feature space. Here F denotes the discrete Fourier
operator and © is the Hadamard product.

image patch J; of size sP x sQ centered around the estimated location. Un-
like [1], we propose to uniformly resize all patches with size P x Q again and
use HOG features to construct the scale feature pyramid. Let §; denote the
correlation response map of the target regressor R; to J;, the optimal scale §
of target is § = argmax, (max(§ ), max(§2),...,max(§s)). Accordingly, the
regression model R; is updated by (3) if max(§;) > 7.

It is clear that a robust long-term tracking algorithm requires a re-detection
module in the case of tracking failure. Different from previous trackers [4,
8], where re-detection is carried out on each frame, we use a threshold 7,
to activate the detector if max(§3) < 7. For computational efficiency, we
do not use the regression model R; as a detector and instead use the online
random fern classifier [5]. As the detector is applied to the entire frame
with sliding windows when max(§;) < 7, we train an online random ferns
detector with a conservative update scheme. Let ¢;, i € {0, 1} be the indica-
tor of class labels and let f}, j € {1,2,...,N} be the set of binary features,
which are grouped into small sets as ferns. The joint distribution for fea-
tures in each fern is P(f1, f2,...,fnN|C =c¢i) = HkM:| P(F|C = ¢;), where
F. = {fs(k,0), f5(k,2),..., fo(k,N)} represents the k-th fern, and o (k,n)

is a random permutation function with range from 1 to N. For each fern F;,

its conditional probability can be written as P(F;|C = ¢;) = ,f,‘k/ , where Np,

is the number of training samples of class ¢; that belongs to the k-th fern and
Ny is the total number of training samples that fell into the leaf-node corre-
sponding to the k-th fern. From the Bayesian perspective, the optimal class
C; is detected as ¢; = argmax,., HkM:1 P(F|C=c¢) [7].

Extensive experimental results on large-scale benchmark datasets show
that the proposed algorithm performs favorably against state-of-the-art meth-
ods in terms of efficiency, accuracy, and robustness.
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