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Abstract

Total Variation (TV) is an effective and popular
prior model in the field of regularization-based im-
age processing. This paper focuses on TV for image
restoration in the presence of impulse noise. This
type of noise frequently arises in data acquisition and
transmission due to many reasons, e.g. a faulty sen-
sor or analog-to-digital converter errors. Removing
this noise is an important task in image restora-
tion. State-of-the-art methods such as Adaptive Out-
lier Pursuit(AOP) [42], which is based on TV with
`02-norm data fidelity, only give sub-optimal perfor-
mance. In this paper, we propose a new method,
called `0TV -PADMM, which solves the TV-based
restoration problem with `0-norm data fidelity. To
effectively deal with the resulting non-convex non-
smooth optimization problem, we first reformulate it
as an equivalent MPEC (Mathematical Program with
Equilibrium Constraints), and then solve it using a
proximal Alternating Direction Method of Multipli-
ers (PADMM). Our `0TV -PADMM method finds a
desirable solution to the original `0-norm optimiza-
tion problem and is proven to be convergent under
mild conditions. We apply `0TV -PADMM to the
problems of image denoising and deblurring in the
presence of impulse noise. Our extensive experi-
ments demonstrate that `0TV -PADMM outperforms
state-of-the-art image restoration methods.

1. Introduction
Image restoration is an inverse problem, which

aims at estimating the original clean image u from a
blurry and/or noisy observation b. Mathematically,
this problem is formulated as:

b = (Ku� εm) + εa, (1)

where K is a linear operator, εm and εa are the noise
vectors, and � denotes an elementwise product. Let
1 and 0 be column vectors of all entries equal to one
and zero, respectively. When εm = 1 and εa 6= 0 (or
εm 6= 0 and εa = 0), Eq (1) corresponds to the addi-
tive (or multiplicative) noise model. For convenience,
we adopt the vector representation for images, where
a 2D M × N image is column-wise stacked into a
vector u ∈ RM×N . So, for completeness, we have
1,0,b,u, εa, εm ∈ Rn, and K ∈ Rn×n.

In general image restoration problems, K rep-
resents a certain linear operator, e.g. convolution,
wavelet transform, etc., and recovering u from b is
known as image deconvolution or image deblurring.
When K is the identity operator, estimating u from
b is referred to as image denoising [35]. The prob-
lem of estimating u from b is called a linear inverse
problem which, for most scenarios of practical in-
terest, is ill-posed due to the singularity and/or the
ill-conditioning of K. Therefore, in order to stabilize
the recovery of u, it is necessary to incorporate prior-
enforcing regularization on the solution. Therefore,
image restoration can be modelled globally as the
following optimization problem:

min
u

`(Ku,b) + λ Ω(∇xu,∇yu) (2)

where `(Ku,b) measures the data fidelity between
Ku and the observation b and ∇x ∈ Rn×n and
∇y ∈ Rn×n are two suitable linear transformation
matrices such that ∇xu ∈ Rn and ∇yu ∈ Rn com-
pute the discrete gradients of the image u along
the x-axis and y-axis, respectively1, Ω(∇xu,∇yu)
is the regularizer on ∇xu and ∇yu, and λ is a

1In practice, one does not need to compute and store
the matrices ∇x and ∇y explicitly. Since the adjoint of the
gradient operator ∇ is the negative divergence operator −div,
i.e., 〈r, ∇xu〉 = 〈−divxr, u〉, 〈s, ∇yu〉 = 〈−divys, u〉 for any
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positive parameter used to balance the two terms
for minimization. Apart from regularization, other
prior information such as bound constraints [4, 46]
or hard constraints can be incorporated into the
general optimization framework in Eq (2).

1.1. Related Work

This subsection presents a brief review of existing
TV methods, from the viewpoint of regularization,
data fidelity, and optimization algorithms. For more
discussions on the connection with existing work,
please refer to the supplementary material.
Regularization: Several regularization models
have been studied in the literature (see Table 1).
The Tikhonov-like regularization [1] function Ωtik
is quadratic and smooth, therefore it is relatively
inexpensive to minimize with first-order smooth opti-
mization methods. However, since this method tends
to overly smooth images, it often erodes strong edges
and texture details. To address this issue, the total
variation (TV) regularizer was proposed by Rudin,
Osher and Fatemi in [33] for image denoising. Several
other variants of TV have been extensively studied.
The original TV norm Ωtv2 in [33] is isotropic, while
an anisotropic variation Ωtv1 is also used. From a
numerical point of view, Ωtv2 and Ωtv1 cannot be
directly minimized since they are not differentiable.
A popular method is to use their smooth approx-
imation Ωstv and Ωhub (see [32] for details). Very
recently, the Potts model [19, 28] Ωpot, which is
based on the `0-norm, has received much attention.
It has been shown to be particularly effective for
image smoothing [40] and motion deblurring [41].
For more applications of the Potts model, we refer
the reader to [5, 9].
Data Fidelity Models: The fidelity function `(·, ·)
in Eq (2) usually penalizes the difference between
Ku and b by using different norms/divergences. Its
form depends on the assumed distribution of the
noise model. Some typical noise models and their
corresponding fidelity terms are listed in Table 2.
The classical TV model [33] only considers TV min-
imization involving the squared `2 fidelity term for
recovering images corrupted by additive Gaussian
noise. However, this model is far from optimal when
the noise is not Gaussian. Other works [43, 16] ex-
tend classical TV to use the `1-norm in the fidelity
term. This norm is suitable for image restoration in

r, s ∈ Rn, the inner product between vectors can be evaluated
efficiently. Fore more details on the computation of ∇ and
div operators, please refer to [8, 36, 3].

Table 1: Regularization Models
Regularization Function Desc. and Ref.

Ωtik(g,h) =
∑n

i=1
g2

i + h2
i Tikhonov-like, [1]

Ωtv2 (g,h) =
∑n

i=1
(g2

i + h2
i )

1
2 isotropic, [33, 39]

Ωtv1 (g,h) =
∑n

i=1
|gi|+ |hi| anisotropic, [35, 43]

Ωstv(g,h) =
∑n

i=1
(g2

i + h2
i + ε2)

1
2 smooth TV, [12, 36]

Ωhub(g, h) =
∑n

i=1
ϕ(gi; hi)

ϕ(gi; hi) =

{
ε
2 ‖gi; hi‖

2
2; ‖gi; hi‖2 ≤

1
ε

‖gi; hi‖2 −
1
2ε

; otherwise

Huber-like, [32]

Ωpot(g,h) =
∑n

i=1
|gi|0 + |hi|0 Potts model, [40,

41]

Table 2: Data Fidelity Models
Data Fidelity Function Noise and Ref.
`2(Ku,b) = ‖Ku− b‖22 add. Gaussian [33, 8]

`1(Ku,b) = ‖Ku− b‖1 add. Laplace [43, 16]

`∞(Ku,b) = ‖Ku− b‖∞ add. uniform [15, 36]

`p(Ku,b) = 〈Ku−b�log(Ku), 1〉 mult. Poisson [26, 34]

`g(Ku,b) = 〈log(Ku)+b� 1
Ku , 1〉 mult. Gamma [2, 39]

`02(Ku,b) = ‖Ku− b + z‖22
s.t. ‖z‖0 ≤ k

mixed Gaussian impulse
[42, 45]

`0(Ku,b) = ‖Ku− b‖0
add./mult. impulse
[13],[this paper]

the presence of Laplace noise. Moreover, additive
uniform noise [15, 36], multiplicative Poisson noise
[26], and multiplicative Gamma noise [39] have been
considered in the literature. Recently, a sparse noise
model using an `02-norm for data fidelity has been
investigated in [42] to remove impulse and mixed
Gaussian impulse noise. In this paper, we consider
`0-norm data fidelity and show that it is particularly
suitable for reconstructing images corrupted with
impulse noise.
Optimization Algorithms: The optimization
problems involved in TV-based image restoration
are usually difficult due to the non-differentiability
of the TV norm and the high dimensionality of the
image data. In the past several decades, a plethora
of approaches have been proposed, which include
time-marching PDE methods based on the Euler-
Lagrange equation [33], the interior-point method
[12], the semi-smooth Newton method [31], the
second-order cone optimization method [21], the
splitting Bregman method [22, 44], the fixed-point
iterative method [14], Nesterov’s first-order optimal
method [30, 4, 37], and alternating direction meth-
ods [35, 23, 39]. Among these methods, some solve
the TV problem in its primal form [35], while oth-
ers consider its dual or primal-dual forms [12, 16].



In this paper, we handle the TV problem with `0-
norm data fidelity using a primal-dual formulation,
where the resulting equality constrained optimiza-
tion is solved using proximal Alternating Direction
Methods of Multipliers (PADMM). It is worthwhile
to note that the Penalty Decomposition Algorithm
(PDA) in [27] can also solve our problem, however,
it lacks numerical stability. The penalty function
can be very large (≥ 108), and the solution can be
degenerate when the minimization subproblem is
not solved exactly. This motivates us to design a
new `0-norm optimization algorithm in this paper.

1.2. Contributions and Organization

The main contributions of this paper are two-fold.
(1) `0-norm data fidelity is proposed to address the
TV-based image restoration problem. Compared
with existing models, our model is particularly suit-
able for image restoration in the presence of impulse
noise. (2) To deal with the resulting NP-hard2 `0
norm optimization, we propose a proximal ADMM
to solve an equivalent MPEC form of the problem.

The rest of the paper is organized as follows. Sec-
tion 2 presents the motivation and formulation of
the problem for impulse noise removal. Section 3
presents the equivalent MPEC problem and our prox-
imal ADMM solution. Section 4 provides extensive
and comparative results in favor of our `0TV method.
Finally, Section 5 concludes the paper.

2. Motivation and Formulations
2.1. Motivation

This work focuses on image restoration in the pres-
ence of impulse noise, which is very common in data
acquisition and transmission due to faulty sensors
or analog-to-digital converter errors, etc. Moreover,
scratches in photos and video sequences can be also
viewed as a special type of impulse noise. However,
removing this kind of noise is not easy, since cor-
rupted pixels are randomly distributed in the image
and the intensities at corrupted pixels are usually in-
distinguishable from those of their neighbors. There
are two main types of impulse noise in the literature
[16, 25]: random-valued and salt-and-pepper impulse
noise. Let [umin, umax] be the dynamic range of an
image, where umin = 0 and umax = 1 in this paper.
We also denote the original and corrupted intensity
values at position i as ui and T (ui), respectively.

2The `0 norm problem is known to be NP-hard [29], since
it is equivalent to NP-complete subset selection problems.

Random-valued impulse noise: A certain per-
centage of pixels are altered to take on a uniform
random number di ∈ [umin, umax].

T (ui) =
{
di, with probability rrv
(Ku)i, with probability 1− rrv

(3)

Salt-and-pepper impulse noise: A certain per-
centage of pixels are altered to be either umin or
umax.

T (ui) =


umin, with probability rsp/2
umax, with probability rsp/2
(Ku)i, with probability 1− rsp

(4)

The above definition means that impulse noise cor-
rupts a portion of pixels in the image while keep-
ing other pixels unaffected. Expectation maximiza-
tion could be used to find the MAP estimate of u
by maximizing the conditional posterior probability
p(u|T (u)), the probability that u occurs when T (u)
is observed. The MAP estimate of u can be obtained
by solving the following optimization problem.

max
u

log p(T (u)|u) + log p(u). (5)

We now focus on the two terms in Eq (5). (i) The
expression p(T (u)|u) can be viewed as a fidelity term
measuring the discrepancy between the estimate
u and the noisy image T (u). The choice of the
likelihood p(T (u)|u) depends upon the property of
noise. From the definition of impulse noise given
above, we have that

p(T (u)|u) = 1− r = n− ‖T (u)− b‖0
n

,

where r is the noise density level as defined in Eq
(3) and Eq (4) and ‖ · ‖0 counts the number of non-
zero elements in a vector. (ii) The term p(u) in
Eq (5) is used to regularize a solution that has a
low probability. We use a TV prior of the form:
p(u) = 1

ϑ exp(−σ · Ωtv(∇xu,∇yu)), where ϑ is a
normalization factor, σ Ωtv(∇xu,∇yu) is the TV
prior. Replacing p(T (u)|u) and p(u) into Eq (5) and
ignoring a constant, we obtain the following `0TV
model:

min
u
‖Ku− b‖0 + λ

n∑
i=1

[
|(∇xu)i|p + |(∇yu)i|p

]1/p
,

where λ is a positive number related to ϑ, σ, and
r. The parameter p can be 1 (isotropic TV) or 2



(anisotropic TV), and (∇xu)i and (∇yu)i denote
the ith component of the vectors ∇xu and ∇yu,
respectively. For convenience, we define ∀x ∈ R2n:

‖x‖p,1 ,
n∑
i=1

(|xi|p + |xn+i|p)
1
p ; ∇ ,

[
∇x

∇y

]
∈ R2n×n.

In order to make use of more prior information, we
consider the following box-constrained model:

min
0≤u≤1

‖o� (Ku− b) ‖0 + λ‖∇u‖p,1 (6)

where o ∈ {0, 1} is specified by the user. For exam-
ple, in our experiments, we set o = 1 for the random-
valued impulse noise and oi =

{
0, bi = umin or umax
1, otherwise

for the salt-and-pepper impulse noise.
In what follows, we focus on optimizing the gen-

eral formulation in Eq (6). But first, we present
an image restoration example on the well-known
‘barbara’ image using our proposed `0TV -PADMM
method for solving Eq (6) in Figure 1.

2.2. Equivalent MPEC Reformulations

In this section, we reformulate the problem in
Eq (6) as an equivalent MPEC from a primal-dual
viewpoint. First, we provide the variational charac-
terization of the `0-norm using the following lemma.

Lemma 1. For any given w ∈ Rn, it holds that

‖w‖0 = min
0≤v≤1

〈1,1− v〉, s.t. v� |w| = 0, (7)

and v∗ = 1−sign(|w|) is the unique optimal solution
of the minimization problem in Eq(7).

Proof. Refer to the supplementary material.

The result of Lemma 1 implies that the `0-norm
minimization problem in Eq(6) is equivalent to

min
0≤u,v≤1

〈1,1− v〉+ λ‖∇u‖p,1

s.t. v� |o� (Ku− b)| = 0 (8)

If u∗ is a global optimal solution of Eq (6), then
(u∗,1−sign(|Ku∗−b|)) is globally optimal to Eq (8).
Conversely, if (u∗,v∗) is a global optimal solution
of Eq (8), then u∗ is globally optimal to Eq (6).

Although the MPEC problem in Eq (8) is ob-
tained by increasing the dimension of the original
`0-norm problem in Eq (6), this does not lead to
additional local optimal solutions. Moreover, com-
pared with Eq (6), Eq (8) is a non-smooth non-
convex minimization problem and its non-convexity

Figure 1: An example of an image recovery result using
our proposed `0TV-PADMM method. Left column: cor-
rupted image. Middle column: recovered image. Right
column: absolute residual between these two images.

is only caused by the complementarity constraint
v� |o� (Ku− b)| = 0.

Such a variational characterization of the `0-norm
is proposed in [17, 24, 18], but it is not used to
develop any optimization algorithms for `0-norm
problems. We argue that, from a practical perspec-
tive, improved solutions to Eq (6) can be obtained
by reformulating the `0-norm in terms of comple-
mentarity constraints. In the following section, we
will develop an algorithm to solve Eq (8) based on
proximal ADMM and show that such a “lifting” tech-
nique can achieve a desirable solution of the original
`0-norm optimization problem.

3. Proposed Optimization Algorithm
This section is devoted to the solution of Eq (8).

This problem is rather difficult to solve, because it is
neither convex nor smooth. Our solution is based on
the proximal ADMM method, which iteratively up-
dates the primal and dual variables of the augmented
Lagrangian function of Eq (8).

First, we introduce two auxiliary vectors x ∈ R2n

and y ∈ Rn to reformulate Eq (8) as:

min0≤u,v≤1 〈1,1− v〉+ λ‖x‖p,1 (9)
s.t. ∇u = x, Ku− b = y, v� o� |y| = 0

Let Lβ : Rn×Rn×R2n×Rn×R2n×Rn×Rn → R
be the augmented Lagrangian function of Eq (9).

Lβ(u,v,x,y, ξ, ζ,π) := 〈1,1− v〉+ λ‖x‖p,1 +

〈∇u− x, ξ〉+ β

2 ‖∇u− x‖2 + 〈Ku− b− y, ζ〉+

β

2 ‖Ku− b− y‖2 + 〈v� o� |y|,π〉+ β

2 ‖v� o� |y|‖2,



where ξ, ζ and π are the Lagrange multipliers as-
sociated with the constraints ∇u = x, Ku− b = y
and v� o� |y| = 0, respectively, and β > 0 is the
penalty parameter. The detailed iteration steps of
the proximal ADMM for Eq (9) are described in
Algorithm 1. In simple terms, ADMM updates are
performed by optimizing for a set of primal variables
at a time, while keeping all other primal and dual
variables fixed. The dual variables are updated by
gradient ascent on the resulting dual problem. In
Algorithm 1, for convenience, we denote the aug-
mented Lagrange function at the kth iteration as
Lkβ(·), where all the primal and dual variables except
the indicated function argument(s) are fixed to their
current estimates.

Algorithm 1 Proximal ADMM (PADMM)
for the Non-Convex MPEC in Eq (9)
(S.0) Choose a starting point (u0,v0,x0,y0, ξ0, ζ0).
Set k = 0. Select the parameters β = 1 and κ ∈(
0, 1

β‖∇‖2+β‖K‖2
)
.

(S.1) Solve the following minimization problems
with D := 1

κI− (β∇T∇ + βKTK):

uk+1 = arg min
0≤u≤1

Lkβ(u) + 1
2‖u− uk‖2D (10)

vk+1 = arg min
0≤v≤1

Lkβ(v) (11)

(xk+1,yk+1) = arg min
x,y

Lkβ(x,y). (12)

(S.2) Update the Lagrange multipliers:

ξk+1 = ξk + β(∇uk − xk), (13)
ζk+1 = ζk + β(Kuk − b− yk), (14)
πk+1 = πk + β(o� vk � |yk|). (15)

(S.3) if (k is a multiple of 30), then β = β ×
√

10
(S.4) Set k := k + 1 and then go to Step (S.1).

Next, we focus our attention on the solutions of
subproblems (10-12) arising in Algorithm 1.
(i) u-subproblem. Proximal ADMM introduces a
convex proximal term 1

2‖u− uk‖2D to the objective,
which leads to a strong convex minimization

uk+1 = arg min
0≤u≤1

β

2 ‖∇u− xk + ξk/β‖2 +

β

2 ‖Ku− b− yk + ζk/β‖2 + 1
2‖u− uk‖2D. (16)

After an elementary calculation, subproblem (16)
can be simplified as

uk+1 = arg min
0≤u≤1

1
2κ‖u− gk‖2

with gk = uk − κ(∇T ξk + KT ζk) + κ[β∇T (xk −
∇uk) + βKT (b + yk −Kuk)]. Then, the solution
uk of (10) has the following closed form expression:

uk+1 = min(1,max(0,gk)).

(ii) v-subproblem. Subproblem (11) reduces to the
following minimization problem:

vk+1 = arg min
0≤v≤1

β

2 ‖v� sk‖2 − 〈v, ck〉,

where ck = 1−o�πk�|yk|, sk = o�yk. Therefore,
the solution vk can be computed as:

vk+1 = min(1,max(0, ck

βsk � sk )).

(iii) (x,y)-subproblem. Variable x in Eq (12) is
updated by solving the following problem:

xk+1 = arg min
x∈R2n

β

2 ‖x− hk‖2 + λ‖x‖p,1,

where hk := −∇uk+1 − ξk/β. It is not difficult to
check that for p = 1,

xk+1 = sign
(
hk
)
�max

(
|hk| − λ/β, 0

)
,

and when p = 2,[
xk+1
i

xk+1
i+n

]
=
(

max(0, 1− λ/β

‖(hki ; hki+n)‖
)
)[

hki
hki+n

]
Variable y in Eq (12) is updated by solving the
following problem:

yk+1 = arg min
y

β

2 ‖y− qk‖2 + β

2 ‖w
k � |y|+ πk/β‖2,

where qk = Kuk+1 − b + ζk/β and wk = o� vk+1.
A simple computation yields that the solution yk
can be computed in closed form as:

yk+1 = sign(qk)�max
(
0, |q

k| − πk �wk/β

1 + vk �wk

)
,

The exposition above shows that the computa-
tion required in each iteration of Algorithm 1 is
insignificant.



Proximal ADMM has excellent convergence in
practice, but the optimization problem in Eq (8) is
non-convex, so additional conditions are needed to
guarantee convergence to a KKT point. Inspired
by [38], we prove that under mild assumptions, our
proximal ADMM algorithm always converges to a
KKT point. Specifically, we have the following con-
vergence result.

Theorem 1. Convergence of Algorithm 1. Let
X , (u, v, x, y) and Y , (ξ, ζ, π). {Xk, Y k}∞k=1
be the intermediate results of Algorithm 1 after the k-
th iteration. Assume that limk→∞(Y k+1 − Y k) = 0.
Then there exists a subsequence of {Xk, Y k} whose
accumulation point satisfies the KKT conditions.

Proof. Refer to the supplementary material.

4. Experimental Validation
In this section, we provide empirical validation

for our proposed `0TV -PADMM method by con-
ducting extensive image denoising experiments and
performing a thorough comparative analysis with
the state-of-the-art. For more experimental results
on image denoising and deblurring, please refer to
the supplementary material.

In our experiments, we use 9 well-known test im-
ages of size 512 × 512. All code is implemented
in MATLAB using a 3.20GHz CPU and 8GB
RAM. Since past studies [7, 14] have shown that
the isotropic TV model performs better than the
anisotropic one, we choose p = 2 as the order of the
TV norm here. In our experiments, we apply the
following algorithms:

(i) `1TV -SBM, the Split Bregman Method (SBM)
of [22], which has been implemented in [20]. We
use this convex optimization method as our baseline
implementation.

(ii) MFM, Median Filter Methods. We utilize adap-
tive median filtering to remove salt-and-pepper im-
pulse noise and adaptive center-weighted median
filtering to remove random-valued impulse noise.

(iii) TSM, the Two Stage Method[10, 11, 6]. The
method first detects the damaged pixels by MFM
and then solves the TV image inpainting problem.

(iv) `02TV -AOP, the Adaptive Outlier Pursuit
(AOP) method described in [42]. We use the im-
plementation provided by the author. Here, we note
that AOP iteratively calls the `1TV -SBM proce-
dure, mentioned above.

(v) `0TV -PDA, the Penalty Decomposition Algo-
rithm (PDA) [27] for solving the `0TV optimization
problem in Eq (6).

(vi) `0TV -PADMM, the proximal ADMM de-
scribed in Algorithm 1 for solving the `0TV optimiza-
tion problem in Eq (6). Our MATLAB code is avail-
able online at http://yuanganzhao.weebly.com/.

4.1. Experiment Setup

For the image denoising task, we use the follow-
ing strategy to generate noisy images. We corrupt
the original image by injecting random-value and
salt-and-pepper noise with different densities (10%
to 70%). Then, we run all the previously mentioned
algorithms on the generated noisy images. For `0TV -
PADMM and `0TV -PDA, we use the same stopping
criterion to terminate the optimization. For `1TV -
SBM and `02TV -AOP, we adopt the default stop-
ping conditions provided by the authors. To evalu-
ate these methods, we compute their Signal-to-Noise
Ratios (SNRs). Since the corrupted pixels follow
a Bernoulli-like distribution, it is generally hard to
measure the data fidelity between the original images
and the recovered images. Therefore, we consider
three ways to measure SNR.

SNR0(u) ,
n− ‖u0 − uk‖0-ε

n− ‖u0 − u0‖0-ε
,

SNR1(u) , 10 log10
‖u0 − ū‖1
‖uk − ū‖1

,

SNR2(u) , 10 log10
‖u0 − ū‖22
‖uk − ū‖22

,

where u0 is the original clean image and ū is the
mean intensity value of u0, and ‖ · ‖0-ε is the soft
`0-norm which counts the number of elements whose
magnitude is greater than a threshold ε. We adopt
ε = 20

255 in our experiments.

4.2. Convergence of `0TV -PADMM

Here, we verify the convergence property of our
`0TV -PADMM method by considering the ‘camera-
man’ image subject to 30% random-valued impulse
noise. We set λ = 8 for this problem. We record
the objective and SNR values for `0TV -PADMM at
every iteration k and plot these results in Figure 2.

We make two important observations from these
results. (i)) The objective value (or the SNR value)
does not necessarily decrease (or increase) monoton-
ically, and we attribute this to the non-convexity

http://yuanganzhao.weebly.com/


Figure 2: Asymptotic behavior for optimizing Eq (6) to denoise the corrupted ’cameraman’ image. We plot the value
of the objective function (solid blue line) and the SNR value (dashed red line) against the number of optimization
iterations. At specific iterations (i.e. 1, 10, 20, 40, 80, and 160), we also show the denoised image. Clearly, the
corrupting noise is being effectively removed throughout the optimization process.

of the optimization problem and the dynamic up-
dates of the penalty factor in Algorithm 1. (ii)
The objective and SNR values stabilize after the
200th iteration, which means that our algorithm
has converged, and the increase of the SNR value
is negligible after the 120th iteration. This implies
that one may use a looser stopping criterion without
sacrificing much restoration quality.

4.3. General Image Denoising Problems

In this subsection, we compare the performance of
all 6 methods on general denoising problems. Table 3
shows image recovery results when random-value or
salt-and-pepper impulse noise is added. We make the
following interesting observations. (i) The `02TV -
AOP method greatly improves upon `1TV -SBM,
MFM and TSM, by a large margin. These results
are consistent with the reported results in [42]. (ii)
The `0TV -PDA method outperforms `02TV -AOP in
most test cases because it adopts the `0-norm in the
data fidelity term. (iii) In the case of random-value
impulse noise, our `0TV -PADMM method is better
than `0TV -PDA in SNR0 value while it is compara-
ble to `0TV -PDA in SNR1 and SNR2. On the other
hand, when salt-and-pepper impulse noise is added,
we find that `0TV -PADMM outperforms `0TV -PDA
in most test cases. Interestingly, the performance
gap between `0TV -PADMM and `0TV -PDA grows
larger, as the noise level increases. (iv) For the same
noise level, `0TV -PADMM achieves better recovery
performance in the presence of salt-and-pepper im-
pulse noise than random-valued impulse noise. This
is primarily due to the fact that random-valued noise
can take any value between 0 and 1, thus, making it

more difficult to detect which pixels are corrupted.

5. Conclusions and Future Work
In this paper, we propose a new method for im-

age restoration based on total variation (TV) with
`0-norm data fidelity, which is particularly suitable
for removing impulse noise. Although the result-
ing optimization model is non-convex, we design an
efficient and effective proximal ADMM method for
solving the equivalent MPEC problem of the original
`0-norm minimization problem. Extensive numer-
ical experiments indicate that the proposed `0TV
model significantly outperforms the state-of-the-art
in the presence of impulse noise. In particular, our
proposed proximal ADMM solver is more effective
than the penalty decomposition algorithm used for
solving the `0TV problem [27] .

There are several research directions that are
worthwhile to pursue for future work. One is to
extend the present result to rank minimization prob-
lems. Another is to incorporate other priors into the
`0-norm data fidelity for the problems of image/video
recovery. The last is to apply the proposed MPEC-
based proximal ADMM algorithm to other sparse
optimization applications.
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Table 3: General Denoising Problems. The results separated by ‘/’ are SNR0, SNR1 and SNR2, respectively.
Img.

Alg.
`1T V -SBM MF M T SM `02T V -AOP `0T V -P DA `0T V -P ADMM

Random-Value Impulse Noise
walkbridge+10% 0.92/7.74/12.25 0.95/12.31/15.55 0.95/11.85/12.87 0.95/12.13/13.75 0.97/13.82/16.60 0.97/13.72/15.83
walkbridge+30% 0.82/6.17/10.37 0.89/8.62/11.01 0.85/5.84/7.82 0.89/7.78/11.47 0.91/9.66/12.81 0.91/9.27/11.67
walkbridge+50% 0.67/4.17/7.13 0.76/4.94/5.72 0.69/2.70/4.77 0.79/5.42/8.73 0.84/7.03/10.11 0.85/6.96/9.20
walkbridge+70% 0.46/2.07/3.55 0.56/1.95/1.74 0.50/1.26/2.16 0.59/3.02/4.97 0.65/4.00/6.20 0.76/5.12/7.04
walkbridge+90% 0.30/0.35/0.64 0.32/-0.21/-1.06 0.30/0.02/-0.00 0.30/0.41/0.75 0.34/0.75/1.30 0.56/2.63/3.89
pepper+10% 0.99/14.98/22.29 0.99/19.10/21.53 0.97/13.48/15.78 0.99/13.60/20.32 1.00/20.16/24.57 0.99/17.98/21.03
pepper+30% 0.97/11.57/16.61 0.96/12.25/13.61 0.87/6.28/9.52 0.98/12.04/16.81 0.98/15.09/19.70 0.98/14.50/18.14
pepper+50% 0.85/6.92/9.61 0.85/6.69/6.72 0.71/3.46/5.45 0.94/9.68/13.09 0.96/11.77/15.68 0.96/11.56/14.14
pepper+70% 0.59/3.02/4.25 0.63/2.76/2.10 0.52/1.63/2.38 0.79/5.19/6.21 0.84/6.77/8.87 0.93/8.93/11.34
pepper+90% 0.30/0.55/0.55 0.35/0.09/-1.03 0.31/0.29/0.09 0.35/0.89/1.00 0.39/1.33/1.72 0.76/4.25/4.81
mandrill+10% 0.92/7.40/6.95 0.89/8.08/8.96 0.93/9.64/9.64 0.93/9.64/9.64 0.95/10.83/11.01 0.95/10.38/9.65
mandrill+30% 0.76/3.81/5.88 0.83/5.95/6.64 0.83/4.74/4.92 0.85/5.83/6.78 0.86/6.65/7.23 0.86/6.42/6.46
mandrill+50% 0.65/2.90/4.59 0.73/3.63/3.70 0.69/1.99/3.36 0.74/3.62/5.02 0.77/4.63/5.54 0.78/4.39/4.47
mandrill+70% 0.51/1.58/2.51 0.57/1.35/0.65 0.52/0.95/1.49 0.62/2.33/3.44 0.64/2.87/3.93 0.70/3.08/3.44
mandrill+90% 0.37/0.24/0.45 0.36/-0.59/-1.90 0.34/-0.08/-0.35 0.39/0.54/0.91 0.42/0.78/1.22 0.58/1.91/2.49
lenna+10% 0.98/11.39/18.21 0.99/17.95/22.98 0.98/13.72/14.33 0.99/14.22/19.13 0.99/17.42/21.71 0.99/16.74/20.10
lenna+30% 0.96/9.69/15.25 0.96/11.50/13.87 0.89/6.27/9.84 0.98/10.73/16.55 0.98/13.08/17.68 0.97/12.62/15.99
lenna+50% 0.86/6.41/9.74 0.86/6.31/6.70 0.74/3.47/5.74 0.94/8.64/12.53 0.95/10.24/14.43 0.95/9.88/12.69
lenna+70% 0.61/2.86/4.23 0.65/2.51/1.97 0.54/1.64/2.56 0.78/4.99/6.97 0.85/6.42/9.19 0.91/7.61/9.83
lenna+90% 0.38/0.55/0.65 0.37/-0.17/-1.28 0.33/0.16/0.03 0.45/0.92/1.13 0.47/1.34/1.92 0.77/4.39/5.55
jetplane+10% 0.98/11.55/17.53 0.99/17.50/20.98 0.98/12.79/13.26 0.99/13.06/19.08 0.99/16.86/19.95 0.98/15.31/16.59
jetplane+30% 0.95/9.21/13.69 0.95/10.34/11.51 0.87/4.99/7.25 0.97/10.41/15.05 0.97/12.42/15.62 0.97/11.48/12.40
jetplane+50% 0.78/4.72/7.61 0.80/4.52/4.00 0.69/1.49/2.75 0.92/7.92/10.56 0.94/9.32/12.24 0.94/8.97/10.10
jetplane+70% 0.43/0.54/1.49 0.53/0.61/-0.69 0.47/-0.51/-0.51 0.67/3.24/4.76 0.74/4.36/6.37 0.89/6.63/7.29
jetplane+90% 0.31/-1.00/-1.25 0.25/-1.80/-3.65 0.26/-1.85/-2.85 0.14/-1.60/-2.18 0.26/-1.20/-1.49 0.73/3.30/3.53
cameraman+10% 0.98/13.62/20.50 0.99/20.12/24.95 0.98/14.19/15.65 0.99/14.73/21.81 0.99/18.80/23.21 0.98/17.25/19.45
cameraman+30% 0.93/10.00/14.60 0.95/12.29/14.17 0.87/6.67/9.81 0.97/12.35/17.52 0.97/14.22/17.82 0.97/12.86/15.13
cameraman+50% 0.74/5.56/7.71 0.82/6.44/6.78 0.69/3.50/5.43 0.91/9.09/12.04 0.94/10.79/14.08 0.95/10.90/12.56
cameraman+70% 0.59/2.70/3.38 0.59/2.67/2.32 0.49/1.76/2.44 0.68/3.68/4.19 0.74/5.23/6.81 0.90/8.52/10.01
cameraman+90% 0.34/0.78/0.72 0.34/0.29/-0.54 0.29/0.49/0.32 0.41/1.06/0.94 0.41/1.29/1.35 0.67/3.56/3.91
boat+10% 0.96/10.39/16.32 0.98/16.25/20.15 0.98/13.46/14.37 0.98/13.89/18.22 0.98/16.38/19.94 0.98/15.78/18.10
boat+30% 0.93/8.80/13.78 0.94/10.76/13.20 0.88/6.26/9.32 0.96/9.97/14.65 0.96/11.93/15.70 0.94/10.98/13.39
boat+50% 0.80/5.80/9.03 0.82/5.92/6.49 0.72/3.04/5.43 0.90/7.77/11.12 0.92/9.26/12.89 0.92/8.77/10.59
boat+70% 0.55/2.48/3.91 0.61/2.31/1.93 0.52/1.35/2.40 0.71/4.21/5.92 0.77/5.44/7.98 0.87/6.86/8.56
boat+90% 0.35/0.42/0.79 0.35/-0.12/-1.00 0.31/0.05/0.13 0.31/0.66/1.18 0.37/1.01/1.79 0.71/3.78/4.84
pirate+10% 0.93/10.06/15.58 0.97/14.97/18.50 0.96/13.26/14.26 0.97/13.26/17.13 0.97/15.66/18.60 0.97/15.46/17.78
pirate+30% 0.88/8.19/12.78 0.91/10.11/12.22 0.85/6.43/8.82 0.93/9.36/13.87 0.93/11.46/14.88 0.93/11.00/13.12
pirate+50% 0.65/4.69/7.27 0.76/5.53/6.00 0.67/3.16/4.92 0.83/6.95/10.28 0.87/8.64/11.83 0.89/8.70/10.60
pirate+70% 0.42/2.05/2.93 0.53/2.20/1.81 0.46/1.48/2.02 0.55/2.86/3.85 0.62/4.02/5.61 0.82/6.74/8.54
pirate+90% 0.26/0.36/0.12 0.29/0.05/-0.92 0.26/0.21/-0.14 0.28/0.46/0.25 0.31/0.74/0.66 0.51/2.26/2.40
house+10% 1.00/17.32/27.50 1.00/23.11/29.74 0.98/13.52/16.73 1.00/17.02/29.42 1.00/24.42/32.64 1.00/22.94/28.08
house+30% 0.98/13.65/20.27 0.97/13.79/15.43 0.89/6.74/10.24 0.99/14.71/23.67 1.00/18.78/26.78 0.99/17.70/23.57
house+50% 0.88/8.29/12.00 0.85/7.31/7.38 0.71/3.76/5.76 0.97/11.89/16.93 0.98/14.72/20.80 0.98/14.40/19.99
house+70% 0.49/2.99/4.25 0.61/3.01/2.35 0.50/1.83/2.51 0.78/6.06/8.20 0.85/7.82/10.83 0.95/11.20/14.70
house+90% 0.29/0.85/0.89 0.32/0.37/-0.78 0.29/0.48/0.21 0.38/1.04/1.01 0.36/1.41/1.84 0.83/6.17/6.82

Salt-and-Pepper Impulse Noise
walkbridge+10% 0.91/7.54/12.36 0.96/12.88/17.26 0.98/15.83/19.88 0.98/15.84/19.88 0.99/17.16/22.66 0.99/17.48/23.16
walkbridge+30% 0.84/6.51/10.66 0.94/10.43/14.27 0.96/11.66/16.44 0.96/11.66/16.44 0.96/11.96/17.08 0.97/12.28/17.54
walkbridge+50% 0.76/5.04/7.80 0.89/8.12/11.42 0.92/9.31/13.96 0.92/9.30/13.94 0.92/9.15/13.84 0.93/9.52/14.30
walkbridge+70% 0.59/2.63/4.50 0.82/6.06/8.67 0.87/7.33/11.51 0.87/7.32/11.50 0.85/6.89/10.99 0.87/7.37/11.56
walkbridge+90% 0.36/1.10/1.94 0.67/3.66/5.08 0.73/4.78/7.76 0.73/4.77/7.73 0.57/3.29/5.81 0.74/4.82/7.82
pepper+10% 0.99/15.16/22.48 0.99/14.77/20.14 1.00/20.48/24.91 1.00/20.48/24.91 1.00/23.21/30.49 1.00/23.89/30.95
pepper+30% 0.97/11.91/16.29 0.98/14.60/18.35 0.99/16.84/22.92 0.99/16.85/22.94 0.99/17.69/24.78 1.00/18.46/25.59
pepper+50% 0.90/8.00/9.81 0.97/12.86/16.10 0.99/14.86/21.54 0.99/14.82/21.49 0.99/14.53/21.09 0.99/15.44/22.41
pepper+70% 0.69/4.06/6.20 0.95/10.56/13.34 0.98/12.48/18.52 0.98/12.47/18.49 0.97/11.39/16.90 0.98/12.69/18.73
pepper+90% 0.33/0.97/1.58 0.89/7.18/8.48 0.93/8.84/12.70 0.93/8.77/12.55 0.75/4.84/7.90 0.93/9.04/12.88
mandrill+10% 0.91/6.36/6.95 0.93/9.75/11.31 0.97/13.08/14.27 0.97/13.08/14.27 0.98/14.39/17.08 0.98/14.54/17.17
mandrill+30% 0.75/4.00/6.04 0.90/7.77/9.03 0.92/8.88/10.71 0.92/8.88/10.71 0.93/9.30/11.79 0.93/9.44/11.88
mandrill+50% 0.69/3.15/4.45 0.84/5.69/6.57 0.87/6.63/8.48 0.87/6.62/8.47 0.87/6.71/8.82 0.88/6.81/8.82
mandrill+70% 0.55/1.59/2.70 0.76/3.84/4.30 0.80/4.87/6.49 0.80/4.87/6.49 0.79/4.76/6.59 0.80/4.90/6.54
mandrill+90% 0.37/0.47/0.83 0.63/1.97/1.89 0.69/3.08/4.28 0.69/3.08/4.27 0.60/2.42/3.83 0.69/3.13/4.39
lenna+10% 0.98/11.44/18.12 1.00/16.18/23.62 1.00/20.52/28.42 1.00/20.52/28.42 1.00/20.74/29.04 1.00/21.07/29.89
lenna+30% 0.96/9.86/14.77 0.99/13.59/19.23 0.99/15.55/23.03 0.99/15.55/23.04 0.99/15.40/22.66 1.00/15.81/23.67
lenna+50% 0.90/7.11/9.39 0.97/11.16/15.78 0.99/12.92/19.87 0.99/12.92/19.87 0.98/12.49/18.93 0.99/13.07/20.10
lenna+70% 0.69/3.76/6.16 0.95/8.96/12.49 0.97/10.66/16.41 0.97/10.65/16.41 0.96/9.90/15.17 0.97/10.78/16.54
lenna+90% 0.42/1.02/1.61 0.87/6.01/7.47 0.91/7.55/11.09 0.91/7.53/11.03 0.75/4.63/7.70 0.92/7.70/11.27
jetplane+10% 0.98/11.64/17.60 1.00/16.96/23.40 1.00/20.38/26.82 1.00/20.38/26.82 1.00/20.73/28.03 1.00/21.31/29.20
jetplane+30% 0.95/9.60/13.67 0.98/13.56/17.86 0.99/15.47/21.87 0.99/15.47/21.88 0.99/15.27/21.63 0.99/15.90/22.74
jetplane+50% 0.89/6.96/9.03 0.96/10.89/14.14 0.98/12.72/18.45 0.98/12.72/18.45 0.98/12.07/17.27 0.98/12.87/18.53
jetplane+70% 0.71/3.22/4.02 0.93/8.48/10.50 0.96/10.16/14.57 0.96/10.16/14.57 0.94/9.18/13.27 0.96/10.28/14.57
jetplane+90% 0.42/0.70/1.02 0.87/5.61/6.01 0.89/6.57/8.64 0.89/6.56/8.60 0.54/2.44/4.85 0.89/6.80/8.70
cameraman+10% 0.98/13.76/20.61 1.00/19.83/27.21 1.00/22.43/30.74 1.00/22.43/30.74 1.00/22.71/29.79 1.00/23.83/32.14
cameraman+30% 0.94/10.60/14.03 0.99/15.91/21.06 1.00/17.93/25.93 0.99/17.90/25.84 0.99/17.43/24.24 1.00/18.56/26.55
cameraman+50% 0.84/6.71/9.22 0.97/13.08/17.21 0.99/15.07/21.87 0.99/15.05/21.83 0.98/14.16/19.99 0.99/15.31/22.04
cameraman+70% 0.65/4.00/5.31 0.94/10.56/13.48 0.97/12.14/17.25 0.97/12.14/17.23 0.95/11.06/15.47 0.97/12.31/17.26
cameraman+90% 0.48/1.50/1.49 0.88/7.51/8.45 0.90/8.35/11.20 0.90/8.34/11.19 0.70/4.68/7.47 0.90/8.67/11.34
boat+10% 0.96/10.40/16.28 0.99/15.31/21.41 0.99/19.02/24.93 0.99/19.02/24.93 1.00/20.01/27.23 1.00/20.39/28.04
boat+30% 0.93/8.90/13.31 0.97/12.76/17.46 0.99/14.53/20.95 0.99/14.54/20.96 0.99/14.65/21.10 0.99/15.09/22.00
boat+50% 0.86/6.57/8.82 0.95/10.40/14.23 0.97/12.02/17.86 0.97/12.01/17.86 0.97/11.67/17.23 0.98/12.23/18.12
boat+70% 0.66/3.52/5.45 0.91/8.19/10.97 0.95/9.69/14.38 0.95/9.69/14.38 0.93/9.04/13.55 0.95/9.79/14.42
boat+90% 0.51/1.52/1.98 0.82/5.54/6.80 0.86/6.69/9.34 0.86/6.66/9.27 0.68/4.04/7.16 0.87/6.85/9.41
pirate+10% 0.94/10.18/15.69 0.98/15.29/20.67 0.98/17.54/22.44 0.98/17.53/22.43 0.99/19.58/25.95 0.99/19.97/26.63
pirate+30% 0.90/8.66/12.90 0.96/12.58/16.77 0.97/13.80/19.47 0.97/13.76/19.39 0.98/14.23/19.98 0.98/14.66/20.69
pirate+50% 0.80/6.43/8.96 0.93/10.19/13.71 0.96/11.62/17.05 0.95/11.56/16.94 0.95/11.34/16.57 0.96/11.87/17.36
pirate+70% 0.58/3.21/5.49 0.87/7.99/10.56 0.92/9.48/14.10 0.92/9.46/14.07 0.89/8.78/13.22 0.92/9.56/14.20
pirate+90% 0.29/1.02/1.78 0.76/5.36/6.67 0.80/6.50/9.64 0.80/6.47/9.58 0.55/3.87/6.39 0.81/6.60/9.72
house+10% 1.00/17.45/27.43 1.00/23.13/33.35 1.00/26.60/40.15 1.00/26.58/40.11 1.00/26.96/40.08 1.00/28.08/42.12
house+30% 0.99/13.99/19.51 0.99/18.39/25.86 1.00/21.48/34.08 1.00/21.48/34.08 1.00/20.87/32.12 1.00/22.24/34.92
house+50% 0.92/9.32/12.44 0.99/15.25/21.58 1.00/18.21/29.65 1.00/18.21/29.65 1.00/17.14/26.82 1.00/18.76/30.02
house+70% 0.79/6.03/8.38 0.97/12.55/17.24 1.00/14.98/24.09 1.00/14.97/24.08 0.98/13.56/20.92 1.00/15.47/24.45
house+90% 0.33/1.74/2.66 0.92/9.13/10.95 0.95/10.43/15.48 0.95/10.35/15.24 0.73/5.60/9.26 0.96/11.06/15.95
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