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Abstract

We address the problem of describing people based on
fine-grained clothing attributes. This is an important prob-
lem for many practical applications, such as identifying
target suspects or finding missing people based on de-
tailed clothing descriptions in surveillance videos or con-
sumer photos. We approach this problem by first mining
clothing images with fine-grained attribute labels from on-
line shopping stores. A large-scale dataset is built with
about one million images and fine-detailed attribute sub-
categories, such as various shades of color (e.g., water-
melon red, rosy red, purplish red), clothing types (e.g., down
jacket, denim jacket), and patterns (e.g., thin horizontal
stripes, houndstooth). As these images are taken in ideal
pose/lighting/background conditions, it is unreliable to di-
rectly use them as training data for attribute prediction in
the domain of unconstrained images captured, for exam-
ple, by mobile phones or surveillance cameras. In order to
bridge this gap, we propose a novel double-path deep do-
main adaptation network to model the data from the two
domains jointly. Several alignment cost layers placed in-
between the two columns ensure the consistency of the two
domain features and the feasibility to predict unseen at-
tribute categories in one of the domains. Finally, to achieve
a working system with automatic human body alignment,
we trained an enhanced RCNN-based detector to localize
human bodies in images. Our extensive experimental eval-
uation demonstrates the effectiveness of the proposed ap-
proach for describing people based on fine-grained clothing
attributes.

1. Introduction
Describing people in detail is an important task for many

applications. For instance, criminal investigation processes
often involve searching for suspects based on detailed de-
scriptions provided by eyewitnesses or compiled from im-
ages captured by surveillance cameras. The FBI list of na-
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Figure 1. Overview of the proposed approach. We propose a novel
deep domain adaptation method to bridge the gap between images
crawled from online shopping stores and unconstrained photos.
Another unique aspect of our work is the ability to decribe people
based on their fine-grained clothing attributes.

tionwide wanted bank robbers 1 has clear examples of such
fine-grained descriptions, including attributes covering de-
tailed color information (e.g., “light blue” “khaki”, “bur-
gundy”), a variety of clothing types (e.g., ‘leather jacket”,
“polo-style shirt”, “zip-up windbreaker”) and also detailed
clothing patterns (e.g., “narrow horizontal stripes”, “LA
printed text”, “checkered”).

Traditional computer vision methods for describing peo-
ple, however, have only focused on a small set of coarse-
grained attributes. As an example, the recent work of
Zhang et al. [46] achieves impressive attribute prediction
performance in unconstrained scenarios, but only considers
nine human attributes. Existing systems for fashion analy-
sis [3, 45] and people search in surveillance videos [11, 41]
also rely on a relatively small set of clothing attributes.

Our work addresses the problem of describing people
with very fine-grained clothing attributes. In particular, we
consider attribute sub-categories that differ in subtle de-

1https://bankrobbers.fbi.gov/
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tails, including many shades of clothing color (e.g., “Ap-
ple Green”, ”Fluorescent Green”, “Light Green”), different
types of a particular garment (e.g., “Denim Jacket”, “Down
Jacket”), and specific clothing patterns (e.g., “thin horizon-
tal stripes”, “other types of stripes”). As far as we know, this
is the first work to address this problem in a real scenario.

Directly tackling this problem is challenging because a
large amount of annotated data is required to train such a
large number of attribute models. In recent years, large-
scale datasets such as ImageNet [6] and Labeled Faces in
the Wild [21] have been built by leveraging vast amounts
of visual data available on the web. However, most of the
images obtained from online sources are either unlabelled
or weakly labelled, often requiring costly manual annota-
tion. In this work, we draw attention to e-Commerce web-
sites, such as Amazon.com and TMALL.com, which contain
structured descriptions of products and can be considered a
reliable source of annotation. By leveraging this rich source
of data from online shopping stores, we are able to collect
a large-scale annotated dataset with around one million im-
ages along with fine-detailed attribute sub-categories.

Some of the typical images from these online shops are
shown in Figure 1. As can be seen, there is a large discrep-
ancy between these samples and the samples from our ap-
plication domain, i.e., unconstrained photos captured by, for
example, surveillance cameras or mobile phones. The on-
line shopping images are often depicted with ideal lighting,
standard pose, high resolution, and good quality, whereas
these conditions cannot be guaranteed for images captured
in the wild. Thus we investigate whether it is possible to
perform domain adaptation to bridge the gap between these
two domains.

We look into the newest weapon of computer vision re-
search – deep learning approaches, which have been applied
very effectively for visual recognition problems e.g., the
large scale visual recognition ImageNet challenge [26] [6],
and the object classification and detection tasks for PAS-
CAL VOC datasets [13, 44]. Very recently, several works
in computer vision have shown that it is generally effective
to transfer a deep learning model learned from a large-scale
corpus, e.g., ImageNet, to other tasks by using the activation
maps of certain layers of Deep Convolutional Neural Net-
works (e.g., the second fully connected layer, FC2) [38, 20].
The underlying assumption of these methods is that the pa-
rameters of the low-level and mid-level network layers can
be re-used across domains. As it may not be true for our
domain adaptation problem, we aim to learn the domain-
invariant hierarchical features directly, while transferring
the domain information within intermediate layers. To this
end, we design a specific double-path deep convolutional
neural network for the domain adaptation problem. Each
path receives one domain image as the input and they are
connected through several alignment cost layers. These cost

layers ensure that (1) the feature learning parameters for the
two domains are not too far away and (2) similar labels en-
code similar high-level features.

Our contributions can be summarized as follows:
1. Fine-grained clothing attributes. We target fine-

grained attribute learning on a large-scale setting. Pre-
vious works only deal with a relatively small set of
coarse-grained person attributes.

2. Large-scale dataset. We collected a large-scale anno-
tated dataset of garments, which contains around one
million images and hundreds of attributes. As far as we
know, this is the largest dataset for clothing analytics
and attribute learning. We believe many applications
can benefit from this dataset.

3. Deep domain adaptation. To bridge the gap between
the two clothing domains considered in our work, we
propose a specific double-path deep neural network
which models the two domains with separate paths.
Several additional alignment layers have been placed
connecting the two paths to ensure the consistency of
the two domain classifiers.

4. Real working application. Our work is part of an actual
product for people search in surveillance videos based
on fine-grained clothing attributes.

2. Related Work
Semantic visual attributes have received significant at-

tention by the computer vision community in the past few
years [29, 9, 37, 28]. Among other applications, attributes
have been used for zero-shot classification [29], visual
search [25, 40], fine-grained categorization [2], and sen-
tence generation from images [27]. Most of these meth-
ods rely on costly manual annotation of labels for training
the attribute models. Notable exceptions include techniques
that mine attributes from web data [4], including sources
such as Wikipedia [39] and online books [7]. Our work fol-
lows this direction, but we focus on cross-domain attribute
mining, where the data is mined from online shopping
stores and then adapted to unconstrained environments, us-
ing a novel deep domain adaptation approach.

Attribute Datasets. There are only a few at-
tribute datasets with fine-grained annotations, for example,
datasets related to detailed descriptions of birds [43] and
aircrafts [42]. We push this envelope by proposing a new
dataset of fine-grained clothing attributes. Compared to
other clothing datasets for fashion analysis [3, 45], our pro-
posed dataset has a much larger set of garments, including
attribute sub-categories and a massive volume of training
images per class.

Describing People by Attributes. Predicting hu-
man attributes [28, 1, 47, 11] is important for many
surveillance applications, such as person re-identification
across cameras [30], suspect search based on eyewitness



testimonies [11, 41], and identification based on soft-
biometrics [22]. Our approach deals with a fine-grained
set of clothing attributes, which is around 10x larger than
most previous methods, and requires minimal manual la-
beling for attribute learning.

Extracting clothing attributes for analysis of fashion
images is another topic that has recently attracted inter-
est [3, 45, 24, 33]. Previous methods developed for this ap-
plication domain often focus on the clothing segmentation
problem, considering pictures depicted in relatively simple
poses, against relatively clean backgrounds. In our work,
we study the domain adaptation problem from “clean”
clothing images obtained from online shopping stores to im-
ages captured in unconstrained environments. Liu et al. [33]
addressed a similar cross-domain clothing retrieval prob-
lem, but their work relies on a different methodology than
ours, deals with a different application, and only considers
a small set of coarse-grained attributes which are manually
labeled.

Deep Learning. Deep Convolutional Neural Networks
have recently achieved dramatic accuracy improvements in
image classification [26], object detection [13], and many
other computer vision areas, including attribute model-
ing [46, 34]. Recent improvements on deep learning in-
clude the use of drop-out [19] for preventing overfitting,
more effective non-linear activation functions such as rec-
tified linear units [14] or max-out [17], and richer modeling
through Network-in-Network (NiN) [31]. In our work, we
customize R-CNN and NiN for body detection, and propose
a new deep domain adaptation approach to bridge the gap
between the source and target clothing domain distributions.

Domain Adaptation. Many methods have been pro-
posed for domain adaptation in visual recognition [16, 18,
15]. Recently, addressing this problem with deep neural
networks has gained increased attention. The majority of
existing approaches for domain adaptation or transfer learn-
ing with deep architectures rely on re-training the last few
layers of the network using samples from the target domain,
or instead performing fine-tuning of all layers using back-
propagation at a lower learning rate [36, 38, 20]. However,
these methods usually require a relatively large amount of
training samples from the target domain to produce good re-
sults. In contrast, our method learns domain-invariant hier-
archical features directly and transfers the domain informa-
tion within intermediate layers, which we show to be much
more effective. The work of Nguyen et al. [35] shares some
of our motivations, but uses a different methodology based
on dictionary learning.

A distinct method that was recently proposed for deep
adaptation is DLID [5] which learns multiple unsupervised
deep models directly on the source, target, and combined
datasets, and uses a representation which is the concatena-
tion of the outputs of each model as its adaptation approach.

While this was shown to be an interesting approach, it is
limited by its use of unsupervised deep structures, which
have been unable to achieve the performance of supervised
deep CNNs. Our method instead uses a supervised double
path CNN with shared layers. It is able to leverage the ex-
tensive labeled data available in the source domain using a
supervised model without requiring a significant amount of
labeled target data.

3. Dataset Preparation
Although there are a few existing fashion datasets in the

research community [45, 32], they are designed for the tasks
of clothing parsing or human segmentation and no anno-
tation of fine-grained attributes is included. Here we in-
troduce our two sets of data and their statistics: (1) online
shopping dataset obtained by crawling large amount of an-
notated images from online shopping stores and (2) “street”
dataset which consists of both web street images and sample
videos from surveillance cameras.

3.1. Online Shopping Dataset
3.1.1 Automatic Data Collection

We crawled a large amount of garment images from sev-
eral large online shopping stores, e.g., Amazon.com and
TMALL.com. We also downloaded the webpages which
contain the images. These webpages can be parsed into
< key, value > pairs where each key corresponds to an
attribute category, for example, “color” and the value spec-
ifies the attribute label, for example, “purplish red” . The
total number of clothing images is 1,108,013 and it includes
25 different kinds of keys, i.e., attribute categories (e.g.
type, color, pattern, season, occasion). The attribute labels
are very fine-detailed. For instance, we can find more than
ten thousand different values for the “color” category.

3.1.2 Data Curation
In consumer photos or images from surveillance cameras,
it might be difficult or impossible for a person to differenti-
ate some attributes that could otherwise be discriminated in
the online shopping domain. For instance, a security guard
would likely not be able to tell the difference between a sus-
pect wearing a “ginger yellow” shirt and another wearing
a “turmeric” shirt. Therefore, we focus on a subset of the
dataset mined from online shopping stores. We consider up-
per clothing only and select three attribute categories: type,
color, and pattern. Several attributes are merged based on
human perception. We also removed some attributes that
are not well-defined, e.g., clothing images with “abstract
patterns”. Finally, we removed attributes for which the
number of collected images is less than 1000. As a result,
we focus on a subset of the data containing 341,021 images
and 67 attributes, including 15 kinds of clothing types, 31
colors and 21 kinds of patterns. We denote this dataset as
Online-data.



3.1.3 Building a Fine-grained Attribute Hierarchy

As described in section 3.1, the set of fine-grained attribute
categories and labels mined from online shopping websites
are given as a list of < key, value > pairs without a hi-
erarchical structure. We therefore organize this data into
a semantic taxonomy of clothing attributes. We consider
“type”, ‘color”, and ”pattern’ as the three higher-level cat-
egories. Each attribute is then classified into these three
categories and further divided into semantic sub-categories.
As an example, “wedding dress” and “sleeveless tank dress”
are both sub-categories of “dress”, which is in turn a sub-
category of “type”.

3.2. Street Dataset
Our unconstrained photo dataset, i.e., street domain

dataset, consists of both web street images and videos from
surveillance cameras.

Web street images. This data consists of two parts: (a)
the standard Fashionate dataset [45], which consists of 685
street fashion images. This dataset has semantic segmenta-
tion labels (e.g., bags, pants), but no fine-grained clothing
attributes. We fully annotated this dataset with our fine-
grained attributes for evaluation purposes. We denote this
data as Street-data-a. (b) the Parsing dataset [8] which con-
sists of 8000 street fashion images. This dataset also has
detailed segmentation labels, but we only used its images.
We denote this data as Street-data-b.

Surveillance videos. we consider 14 surveillance videos
captured from two public train stations.The duration of each
video is 10 minutes. These videos have different camera
angles (e.g., captured from the train station platform, gate-
way, lobby). We manually annotated the bounding boxes of
each person in the videos, using a step size of 60 frames.
Thus the total number of frames/images we annotated is
14*10*30*60/60 = 4200. There are 6.2 people on aver-
age for each frame with reasonable size. We also annotated
120 frames with our fine-grained clothing attributes, using a
region-of-interest where pedestrians have higher-resolution.
These 120 frames were used as evaluation. The rest of the
data (with bounding box annotation) was used as extra data
for unsupervised training. We denote this dataset as Street-
data-c.

It is worth noting that the “Street datasets” are relatively
small considering the fine-grained attribute learning prob-
lem. It is impractical to directly learn the attributes from
the street domain. The partially labelled street dataset will
be fed into our learning framework as supervised training
samples and evaluation ground-truth. These unlabelled data
will be used as guiding samples to induce the network to fit
the target domain feature distribution. More details will be
discussed in the next section.

4. Approach
We now introduce our solution to tackle the problem of

describing people based on fine-grained attributes, as shown
in Figure 3. First, we introduce an improved version of the
R-CNN body detector which effectively localizes the cloth-
ing area. We then describe our proposed approach for at-
tribute modeling and domain adaptation.
4.1. RCNN for Body Detection

Our body detection module is based on the R-CNN
framework [13], with several enhancements made specifi-
cally for the clothing detection problem. It consists of three
sub-modules. First, selective search is adopted to generate
candidate region proposals. Then, a Network-in-Network
(NIN) model is used to extract features for each candidate
region. Finally, linear support vector regression (SVR) is
used to predict the Intersection-over-Union (IoU) overlap of
candidate patches with ground-truth bounding boxes. Next
we introduce these components, and elaborate on the details
of our enhancements.

Region Proposals. Due to the non-rigid property of
clothing, standard selective search based on super-pixel pro-
posal generation is shown to be more suitable to our detec-
tion task. Usually, about 2000 region proposals are gener-
ated per image. According to the clothing size in the train-
ing images, we discard the candidate regions with inappro-
priate size and aspect ratio. After that, about 100 hypothe-
ses are left, which considerably reduces the number of noisy
proposal regions and thus accelerates the feature extraction
procedure.

Feature Extraction. The NIN model [31] is used to
extract the high-level features from the candidate regions.
Briefly, this model is pre-trained on the Imagenet Challenge
dataset (ILSVRC-2014 classification task), and then fine-
tuned using a subset of clothing images from our data.

Region IoU Prediction. In the R-CNN framework, the
positive samples in training are the candidate regions with
relatively large IoUs overlapped with ground-truth objects.
We claim that there are two shortcomings in this strategy.
First, users are required to select a good IoU overlap thresh-
old, which is crucial to the detection performance. Second,
all image regions whose IoUs do not meet the threshold are
discarded. However, we suggest that those regions are use-
ful for the detection task. In our approach, instead of pre-
dicting a yes/no value for a given region, we actually predict
its IoU overlap value. We used a linear regression model
(SVR) in our implementation for predicting the region IoU
using the features extracted by the fine-tuned NIN model.

In our implementation, we discretize the IoU values into
ten intervals with a step of 0.1, and sample the equivalent
training regions for each interval to balance the data during
the training procedure. Lastly, the bounding box regression
is employed to refine the selected proposal regions with the



Figure 2. Enhanced R-CNN detection pipeline.

activation of the NIN fully-connected layer (FC2) as fea-
tures.

4.2. Deep Domain Adaptation
Although we have collected a large scale dataset with

fine-grained attributes, these images are taken in ideal
pose/lighting/background conditions, so it is unreliable to
directly use them as training data for attribute prediction
in the domain of unconstrained images captured, for exam-
ple, by mobile phones or surveillance cameras. In order to
bridge this gap, we design a specific double-path deep con-
volutional neural network for the domain adaptation prob-
lem. Each path receives one domain image as the input, i.e.,
the street domain and the shop domain images. Each path
consists of several convolutional layers which are stacked
layer-by-layer and normally higher layers represent higher-
level concept abstractions. Both of the two network paths
share the same architecture, e.g., the same number of con-
volutional filters and number of middle layers. This way,
the output of the same middle layer of the two paths can be
directly compared. We further connect these paths through
several alignment cost layers where the cost function is cor-
related with the similarity of the two input images. These
alignment cost layers are included to ensure that (1) the fea-
ture learning parameters for the two domains are not too far
away and (2) the high-level features have sufficient similar-
ity along with the label consistency.

We also design a merging layer whose input is from the
two network paths, which are merged and share parame-
ters in the subsequent layers. This design is used to de-
ploy the model after the co-training. We take the merging
operation as the simple max operation, i.e. f(Xs, Xt) =
max(Xs, Xt). So we can simply drop out this layer at test-
ing time.

4.2.1 Alignment Layer Cost Function

We present the alignment layer cost function in the follow-
ing form:

f(s, t) = ||Xs −Xt|| × λφ(s, t), (1)

where Xi = wi ⊗ yi is the activation from the connec-
tion layer, e.g., the convolutional layer or the fully con-
nected layer and φ(s, t) is a correlation function. We can

directly obtain the gradient of this cost w.r.t. the connec-
tion layer to reduce computational cost. If we consider a
fully supervised domain adaptation problem, we can set the
correlation function as the label similarity, e.g. φ(ls, lt) =

exp{− ||ls−lt||
2

γ }, where ls and lt are the attribute label vec-
tors for the source and target domain images, respectively.
If we consider a semi-supervised or unsupervised learning
problem, we can assume this function is defined by addi-
tional prior information, e.g., the visual similarity function.
Note that we work on multiple attribute categories at the
same time, i.e. we model the attribute classifiers simulta-
neously. The final overall learning objective of the DDAN
is defined as a combination of a multi-label classification
objective and multiple alignment regularization terms.

4.2.2 Discussion

It is worth noting the the following unique properties of the
proposed DDAN: Consider a simplified CNN-based clas-
sification function, i.e. y = f(g(x), w) where w are the
classifier parameters (e.g., the final logistic regression layer)
and g(x) is the deep feature generator. In our domain adap-
tation problem, DDAN tries to align the target domain fea-
ture generator gtgt(x) with the source domain feature gen-
erator gsrc(x). As opposed to traditional domain adapta-
tion approaches which try to align the features by find-
ing a suitable subspace [16, 12], DDAN aims to align the
high/middle level features directly during the training step
of feature learning.

Comparison with deep learning fine-tuning frame-
work: The popular fine-tuning framework usually takes
the output of the last layer of the network as a feature and
performs additional training for the new tasks or performs
fine-tuning on the whole original network without drop-
ping the original objective function. The former case is
not suitable for our problem as we don’t have enough di-
verse training samples to re-train the target domain clas-
sifier. The latter case is equivalent to adapting the classi-
fier y = f(g(x), w) to ytgt = ftgt(gtgt(x), wtgt). The
proposed DDAN has two distinct properties over this so-
lution: (1) it puts an additional regularization term on the
adaptation process which seeks the feature agreement w.r.t.
the prior information, e.g., the label consistency or visual
similarity. (2) the learned feature generator gtgt has con-
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Figure 3. Overview of our proposed approach.

sistent output with the source domain feature so that we
can directly apply new attribute classifiers to unseen labels
learned from the source domain without additional cost.

Comparison with Siamese network: The structure of
the proposed DDAN is similar to the Siamese network, of-
ten used for verification tasks. Both networks have two
paths and a merging step. But the functions of these two
key modules are quite different. The Siamese network cal-
culates the difference of the two input channels and there is
no back propagation channel to constrain the middle level
representation.

The role of the alignment cost layers: Our main mo-
tivation is that instead of learning the domain adaptation
at the classifier level, we aim to learn the domain invari-
ant feature directly through the hierarchical feature learning
model. The alignment cost layers connecting the two paths
at a higher level plays a fundamental role in this process.
The unshared lower level features model each domain spe-
cific data distribution while we constrain the higher level
features to be consistent w.r.t. the label/prior information.

5. Experiments
In this section, we present our implementation details,

provide an extensive experimental analysis for evaluating
our proposed approach, and showcase a couple of appli-
cations. We will be referring to the datasets described in
section 3: Online-data, Street-data-a, Street-data-b, and
Street-data-c.

5.1. Implementation Details

5.1.1 Network configuration
For each path of the DDAN, we configure the network with
the same setting of the standard AlexNet [26], i.e. 5 convo-
lutional layers and 3 fully connected layers, and the same
filter numbers and neuron sizes. We have put the alignment
cost layer at Conv5, FC1 and put the merging layer at FC2.
During testing, we simply drop out the merging layer and
use the target domain network. For the retrieval task, we
used the FC2 output for both source and target domains.

We used a modified code of cuda-convnet 2. We mod-
ified the code to enable the support of multi-attribute co-
training, i.e. we trained the three attribute categories at the
same time. We also modified the code to support the corre-
lation function.

Initialization: We tried out two initialization methods:
(1) using random Gaussian values and (2) using the model
learned from the ImageNet dataset as the initialization for
both source and target domains. Generally, the second op-
tion gave us more stable results and fast convergence. Thus,
we used this initialization method in the next sections. Nor-
mally 20 epochs are enough for the network training.

5.1.2 Learning setting
Supervised training. If we have the annotation from the
target domain, we define the correlation function φ for the
alignment cost layers as the similarity at the label level. For
each source domain image, we first select a set of target
domain images with the closest label distance. We then fur-
ther rank this set according to the visual similarity w.r.t the
source image, and select the first one as the assignment.
This pair is fed into the network as the input of the two
paths. We set the network label as the source domain (shop-
ping) as it has a much larger and diverse amount of data.

Unsupervised training. If we don’t have the annotation
from the target domain, we use prior knowledge to define
the similarity between the source and target images. In our
experiments, we used a large amount of unannotated street
images. In practice, we perform an iterative procedure for
the training. At each epoch, we use the linear product sim-
ilarity of the current FC2 layer features to find the nearest
neighbour of a given source domain sample in the target do-
main dataset. The correlation function φ is also defined as
this linear similarity. Then the source domain image and its
neighbour are fed into the network. After one epoch, we
re-calculate the similarity using the updated model. This
procedure iterates until the preset epoch number is reached.

2code.google.com/p/cuda-convnet/
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Figure 4. Precision-recall curves for body detection results on
Street-data-a .

5.2. Exp1: RCNN body detection
For our body detection experiment, we annotated 4,000

images of the Online-data and 2,000 images of the Street-
data-b with clothing bounding boxes for training. The
Street-data-a dataset was used for validation. We compare
the result of our enhanced RCNN-NIN detector with two
baselines: (1) Deformable Part-based Model(DPM) [10]
and (2) RCNN using a traditional CNN model [26] pre-
trained on ImageNet [6] as feature generator. All of the
baselines and the proposed method are tested using the same
dataset.

As the performance of detection greatly affects the at-
tribute learning, we set a strict evaluation metric for body
detection. More specifically, we consider a detection to be
correct only if the overlap of the prediction and ground-truth
bounding boxes is over 0.6 instead of 0.5 as common in
standard evaluation. We evaluate the performance of our
body detector on Street-data-a with Precision Recall curves
as shown in Figure 4. We also report the Average Precision
(AP) result. As can be seen, our RCNN-NIN detector con-
sistently outperforms the baselines (RCNN-NIN AP 0.452
vs DPM AP 0.343 and conventional-RCNN AP 0.408 ).

5.3. Exp2: Deep Domain Adaption for fine-grained
attribute classification

We consider the following methods for comparison: (1)
CNN, where we directly apply the model learned from the
source domain to the target domain. (2) CNN-FC2, where
we use the FC2 layer of a CNN model [26] as the features
for training a classifier using street domain images. Since
this method basically re-trains the attribute classifiers, it
cannot predict unseen categories in the target domain. (3)
CNN-FT, i.e., CNN fine-tuning, which keeps the original
shop domain objective function, and then feeds the network
with the street domain training samples.

(4) DDAN-S, where we use the supervised setting of the
proposed DDAN. (5) DDAN-U, where we use the unsuper-
vised setting of the DDAN, without using any annotated tar-
get domain data. It is worth noting that we didn’t use any

Table 1. Fine-grained attributes classification results for Street-
data-c.

Street-data-c CNN DDAN-U
Type-T1 41.53 48.32

Type-T1-b 48.31 55.12
Color-T1 5.08 15.34

Color-T1-b 5.93 18.87
Pattern-T1 70.34 72.45

Pattern-T1-b 71.19 75.90

Table 2. Fine-grained attributes classification results for Street-
data-a.

Street-data-a CNN CNN-FC2 CNN-FT DDAN-S DDAN-U
Type-T1 25.44 22.12 32.53 31.02 33.42
Type-T1-b 29.68 25.67 37.9 36.20 38.92
Color-T1 16.23 10.02 22.87 25.21 27.39
Color-T1-b 20.18 14.43 27.21 30.46 32.30
Pattern-T1 73.11 60.91 76.2 75.31 74.13
Pattern-T1-b 73.39 63.20 76.6 76.01 74.90

tricks which are commonly used in the ImageNet challenges
(e.g., multiple models ensembles, data augmentation, etc.)
to improve the performance.

Regarding the Street-data-a dataset, we split it into two
halves and used the first half as the target domain training
samples, and the other half for testing. We used Street-data-
b as extra data during training. Regarding the Street-data-c
dataset, we tested only the unsupervised setting of DDAN,
as we have very limited fine-grained attribute annotation
data for this dataset.

Evaluation metrics: We used Top-1 (T1) and Top-1-
base (T1-b) accuracy as the evaluation metrics, defined as
follows. Top-1 accuracy is the standard evaluation metric
for general classification problems. As claimed in Sec 3,
we are working with a fine-grained attribute list. The at-
tributes themselves naturally fall into a hierarchical struc-
ture. If the prediction and the groundtruth share the same
immediate father node in the hierarchy, we consider it as a
correct prediction. In this case, the accuracy we get is Top-
1-base accuracy.

Result analysis: We present our results in Tables 1 and
2. For the Street-data-c, i.e., the surveillance video dataset,
we only report the results of the fully unsupervised setting
due to the lack of annotation for this domain. We can see
consistent improvement of DDAN-U over directly applying
the source domain CNN model with big margin. It shows
that the feature learning can benefit from large amounts of
unannotated target domain data. For the Street-data-a re-
sult, i.e., the street photo dataset result, we can see that
our domain adaptation methods outperform the baselines
CNN, CNN-FC2 and CNN-FT. We can see that DDAN-
U achieves the best results on most of the categories.

Overall, we notice that we can achieve much better re-
sults for “Type” and “Pattern” than “Color” categories, es-
pecially in the surveillance scenario. It is reasonable as



White vest, stripes Black dress, solid color

Brown:beige coat, solid color T-shirt, checks(plaid)

Purplishred dress, solid color Dark gray T-shirt, stripes

Figure 5. Application 1: Attribute-based people search. We rank the images according to their attribute scores. The top-5 ranking results
for each query are exhibited. Top 2 rows results are from Street-data-a, and the bottom results are from Street-data-c. The images that
exactly match the query are marked with red bounding box.Best viewed in original pdf file.

Figure 6. Application 2: Street2Shop clothing retrieval. Top 2 rows results are from Street-data-a, and the bottom two rows are from
Street-data-c. We output the top 3 retrieval results for both datasets. Best viewed in original pdf file.

“Color” is very sensitive w.r.t. the lighting condition in the
wild, while “Type” and “Pattern” are more related to the
“shape” of the garments. Our domain adaptation framework
reduces the gap between the two domains.

5.4. Application 1: Attribute-based people search

Here we showcase a few examples of attribute-based
people search using the proposed system in Figure 5, e.g.
finding people wearing a black-stripes T-shirt. We rank im-
ages based on the sum of the attribute confidence scores.
We only show the top-5 ranked images due to space limita-
tion. The images that exactly match the query are marked
with red bounding box.

5.5. Application 2: Street2Shop clothing retrieval

As discussed in Sec 4.2, one major advantage of the pro-
posed DDAN is that the output features share the same dis-
tribution of the source domain. So we can directly calculate
the similarity of the two domain images without finding the
common feature subspace or metric space. It provides great
convenience for clothing retrieval – we can easily find the
most similar online shopping clothes by looking at the fea-

ture similarity, e.g. the linear product distance. Some exem-
plar results are shown in Figure 6. We showcase the results
for both Street-data-a and Street-data-c datasets. We out-
put the top 3 retrieval results for both datasets.

6. Conclusion

In this paper, we presented a novel deep domain adapta-
tion network for the problem of describing people based on
fine-grained clothing attributes. As far as we know, this is
the first work to address this problem in a real scenario. Our
experiments show the advantage of the proposed approach
over the baselines. We also showcased practical applica-
tions of this work. We are planning to make the full large-
scale online shopping dataset available to the community,
which in our opinion will be useful for various applications.
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