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Abstract

We present a co-clustering framework that can be used
to discover multiple semantic and visual senses of a
given Noun Phrase (NP). Unlike traditional clustering ap-
proaches which assume a one-to-one mapping between the
clusters in the text-based feature space and the visual space,
we adopt a one-to-many mapping between the two spaces.
This is primarily because each semantic sense (concept)
can correspond to different visual senses due to viewpoint
and appearance variations. Our structure-EM style opti-
mization not only extracts the multiple senses in both se-
mantic and visual feature space, but also discovers the
mapping between the senses. We introduce a challenging
dataset (CMU Polysemy-30) for this problem consisting of
30 NPs (⇠5600 labeled instances out of ⇠22K total in-
stances). We have also conducted a large-scale experiment
that performs sense disambiguation for ⇠2000 NPs.

1. Introduction
Knowledge representation is a classical problem in AI.

There have been mammoth efforts such as CYC1 to build
these knowledge bases using human intelligence. Unfortu-
nately, effective construction of broad-coverage knowledge
bases still remains an unsolved problem, as manual label-
ing lacks the richness and scalability required for this task.
In recent years, the focus has shifted to building knowl-
edge bases automatically by learning knowledge from free
text [8, 1] and images on the internet [9, 17]. While these
systems have shown much promise, one issue that limits
their performance is the problem of semantic and “visual”
polysemy. Polysemy is the capacity for a word or Noun
Phrase (NP) to have multiple semantic meanings and visual
meanings as well. For example, the noun phrase Apple can
refer to both the company and the fruit. Similarly, in the vi-
sual world, Apple can refer to images of the fruit, the com-
pany logo, and even iPhones and iPads. Therefore, handling
polysemy by extracting multiple senses of a word/NP is an
important problem that needs to be addressed.

One obvious way to handle semantic polysemy is to fall
back to human developed knowledge bases such as Word-

1
http://en.wikipedia.org/wiki/Cyc

net [31], Freebase [25] and even Wikipedia [11]. These
broad-coverage knowledge bases suffer from the problem
of missing information. For example, WordNet has good
coverage of common nouns, however it has been criticized
for being too fine-grained [41]. In addition it contains
very few named entities (people, locations, organizations,
etc.); Wikipedia and Freebase help to bridge this gap, but a
great deal of information is still missing [36]. Furthermore,
WordNet or Freebase have little or no information related
to visual senses and still require extensive manual labeling
to create mappings between semantic and visual senses. In
contrast, unstructured data sources such as images and text
from the web are much larger and more diverse; which can
be readily used to discover both semantic and visual senses.

Instead of relying on manually-compiled resources, we
focus on automatically discovering multiple senses of a NP
in an unsupervised manner. The common unsupervised
paradigm is to represent each noun phrase in terms of text
features or image features and then cluster these instances
to obtain multiple semantic and visual senses of the NP re-
spectively. Since the semantic and visual senses of a NP
are closely related, recent approaches have also attempted
jointly clustering images and text. Most joint clustering ap-
proaches make the simplifying assumption that there exists
a one-to-one mapping between semantic and visual senses
of a word. This assumption rarely holds in practice, how-
ever. For example, while there are two predominant seman-
tic senses of the word “Apple”, there exist multiple visual
senses due to appearance variation (green vs. red apples),
viewpoint changes, etc.

We present a generalized co-clustering algorithm that
jointly discovers both semantic and visual senses for a given
NP . For a given NP (such as “Apple”), we first download
webpages which contain both image and text references to
the NP. Each webpage is treated as a datapoint and repre-
sented in terms of image and text features. We then use
our co-clustering algorithm which clusters data points in
image and text feature space separately and learns a one-to-
many mapping between the clusters in two feature spaces 2

(See Figure 1). We demonstrate the effectiveness of our ap-
2This can also be formulated as hierarchical clustering where higher

level nodes correspond to clusters in text space and lower level nodes cor-
respond to clusters in visual space
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Figure 1: We present a co-clustering algorithm that discovers
multiple semantic and visual senses of a given Noun Phrase (NP).
In the figure above, we show the multiple senses discovered for
the NPs Columbia and Apple. In the case of Columbia, our ap-
proach automatically discovers four semantic senses: university,
river, sportswear, studio. In case of Apple, it discovers two seman-
tic senses: fruit, company. Our approach also discovers multiple
visual senses. For example, the sportswear sense of Columbia cor-
responds to two visual senses: jacket and shoes. Semantic senses
are shown as word clouds with size of each word being propor-
tional to its importance. Visual senses are shown as average im-
ages of members belonging to the cluster.

proach using four different experiments including a large
scale experiment of co-clustering on ⇠2000 NPs. We show
how the joint space provides constraints that lead to high
purity clusters. But more importantly, this joint learning
process allows us to infer an alignment between the seman-
tic and visual senses of the NP.
Why use images and text? We believe that the informa-
tion in images and text is complementary and one needs to
harness both to build a system that robustly discovers mul-

tiple senses of a word. For example, using images alone,
it is almost impossible to differentiate viewpoint changes
from conceptual changes. Similarly, using text based sys-
tems alone it is hard to differentiate similar semantic mean-
ings. An example of this is the bike and car meaning of
the word “Falcon”. In this case, text-based features tends
to cluster the bike and the car sense together since both are
vehicles but co-clustering in the joint space helps us to dif-
ferentiate between the two.
Contributions: Our contributions include: (a) We intro-
duce the problem of joint extraction of semantic and visual
senses for given noun phrases and provide a novel formula-
tion of this problem. We demonstrate how joint extraction
of senses not only improves clustering but also helps us ex-
tract relationships between semantic and visual meanings
of words. (b) We propose a generalized co-clustering algo-
rithm where the two domains need not have the same gran-
ularity of clustering. We achieve this by enforcing a one-
to-many constraint during the clustering process instead of
a one-to-one mapping. (c) Finally, we introduce a new
challenging dataset called CMU Polysemy-30, containing
30NPs for the polysemy problem.

2. Related Work
A significant amount of previous work has investigated

the problem of automatically inducing word senses from
statistics derived from text corpora [32, 7, 23]. This ap-
proach has been quite successful given the small amount
of prior knowledge provided: e.g., Yarowsky [46] proposed
an unsupervised approach for word sense disambiguation
(WSD) but suggested the use of dictionary definitions as
seeds. But as pointed out before, most knowledge bases
still suffer from a great deal of missing information [36].

Extracting visual senses of polysemous words using
web images is an extremely difficult problem. There have
been early efforts on automatically training visual clas-
sifiers using web data to build large datasets automati-
cally [26, 39, 42, 27, 20], find iconic images [5, 35] and
improve image retrieval results [19, 28, 45, 34]. Inspired
by the success of mixture models for object detection [18],
some recent approaches such as [9, 17] have also explored
clustering web data and training detection models. For ex-
ample, NEIL [9] performs clustering in visual appearance
space to generate visual subcategories. But since NEIL only
uses visual information, it cannot differentiate between se-
mantic and visual polysemy: that is, it cannot label if two
clusters correspond to same semantic meaning. On the other
LEVAN [17] uses Google N-grams to first discover differ-
ent senses for each NP. However, each N-gram leads to a
different visual cluster, which results in a lot more clusters
than NEIL, e.g., hundreds of senses for the NP “Horse”. But
similar to NEIL, clustering visually different n-grams (“eat-
ing Horse” and “jumping Horse”) into one semantic cluster
would require using further text information.

To handle these problems, past work has also focused on



using both images and text on the web for discovering vi-
sual and semantic senses. For example, Schroff et al. [39]
incorporate text features to rerank the images before train-
ing visual classifiers. In another work, Berg et al. [4] dis-
cover topics using text and then use these topics to cluster
the images. However, their approach requires manually se-
lecting the topics for each category. Saenko et. al. [37, 38]
presented a model for learning visual senses using images
clustered using text, but rely on WordNet’s sense inventory.
Another approach [44] uses Wikipedia to find the senses
of a word. Lucchi et. al [28] used the click-through data
and human relevance annotations to learn multiple senses.
But the scalability and coverage of such knowledge bases
and human annotations is questionable, and therefore in this
work we focus on unsupervised approaches. Leoff et al [24]
focused on discovering visual senses in completely unsu-
pervised manner by building a joint space of image and text
features followed by clustering in this joint space. In addi-
tion, Barnard et al. [3] looked at the complementary prob-
lem of discovering semantic senses using image data. In our
work, we propose an approach to jointly discover multiple
semantic and visual senses from web data. We demonstrate
that a joint solution (with a one-to-many mapping) allows
us to improve the clustering performance and extract rela-
tionships between the semantic and visual senses of a NP.

Finally, our work is also closely related to approaches
in co-clustering [14, 16] and multi-view clustering based
approaches [15]. Previous approaches, however, assume
a one-to-one mapping between clusters in two spaces. In-
stead, we relax this assumption and propose a co-clustering
based approach where the mapping between clusters in two
domains is one-to-many.

3. Co-Clustering Approach
Given two domains D

1

and D
2

, our goal is to jointly
cluster the instances in both domains. Previous approaches
have tackled this problem by augmenting feature spaces and
performing clustering in the joint space. Other approaches
have assumed a one-to-one mapping between the clusters in
the two domains [14]. In many scenarios, however, the do-
mains have different granularities and therefore a one-one
mapping proves too strong an assumption. For example, if
one considers semantic, visual and audio domains, the gran-
ularity in each domain is quite different. A cluster in the
semantic domain might correspond to multiple clusters in
both visual (due to viewpoint, appearance differences etc.)
and audio domains (due to difference in pronunciations).
We break the one-one mapping restriction and propose a
generalized co-clustering algorithm.

3.1. Formulation
Let’s assume that this one-to-many mapping exists from

D
1

to D
2

. The input to the algorithm is N data points with
each point being represented as Xi =< x

1

i , x
2

i > (xd
i is the

feature representation of the i

th datapoint in domain Dd).

The output of our clustering algorithm is a set of clusters
in each domain (defined in terms of an assignment of data
points to each cluster) and a one-to-many mapping between
the clusters in two domains.

We represent the clusters and the one-to-many mapping
as a bipartite graph G = (V 1

, V

2

, E), where V

1 and V

2

are the set of clusters in domain D
1

and D
2

respectively. E
represents the set of edges between clusters in V

1 and V

2;
therefore, Ek,l = 1 indicates cluster k in D

1

corresponds to
cluster l in D

2

. We enforce the one-to-many constraint by
ensuring that for each l,

P
k Ek,l = 1. Each cluster node
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,D
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) is associated with model param-
eters (✓1k, ✓
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i >, its
cluster membership is represented by a corresponding pair
of cluster labels Yi =< y
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i > (ydi represents the mem-
bership of ith datapoint in domain Dd). Therefore, given
X , our goal is to infer G⇤
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, Y

⇤ such that it maximizes
the scoring function S(G,⇥, Y,X), which is defined as:
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The first term in the scoring function corresponds to the
data likelihood term in the two domains. This term prefers
coherent clusters within each domain independently, which
are explained using the model parameters ⇥d. The second
term in the scoring function is the smoothness term. This
term attempts to ensure that if two data points xi and xj are
similar in domain Dd they get assigned to the same cluster
in that domain. Note that if the structure (e.g. number of
clusters) is fixed, then the smoothing term is redundant, but
here it is essential to 1) regularize the likelihood term and
avoid trivial solution (one cluster for each data point - high
likelihood and good mapping), and 2) provide both intra-
and inter cluster distance metrics to make proper structure
movements. The third and final term in the scoring func-
tion is the cross-domain term which indicates that if two
instances are similar in domain D

2

, then these data points
should be assigned to same cluster in domain D

1

. Note this
term is the asymmetric due to asymmetric nature of one-to-
many relationship between the two domains. In Section 4,
we define the specific  d, �d and �12 that instantiate this
approach in our text-vision application.

3.2. Optimization using Iterative Approach
Optimizing the above equation is in general an NP-hard

problem. We therefore use an iterative optimization ap-
proach inspired by structure-EM for maximizing the above
scoring function.

Given a fixed graph structure (fixed number of clusters
and mapping), we iterate over estimating ⇥ and Y using



hard-EM style iterations [22] to maximize the scoring func-
tion S . That is, given ⇥, we perform inference to assign
data points to nodes in each domain by estimating the mem-
bership variable Y . We enforce the one-to-many constraint
using a cautious approach [46], dropping datapoints which
are not congruent with the mapping in structure G. Specifi-
cally, we treat the low-scoring data points as noise and dis-
card them. Once we estimate membership Y , we use this
new membership to estimate the new parameters ⇥.

After estimating S(·) for a given Gt, we then take a
structure step. Here, we create proposals for changes in
structure (splitting a node into two or merging two nodes
into one). We greedily select the best proposal G using an
approximation function. Using the newly proposed Gt+1

,
we re-estimate the scoring function S using EM over⇥ and
Y . If the new estimated score is higher than the score at pre-
vious iteration, we accept the structure step and continue. If
the estimated score is lower, we reject the structure step and
switch back to Gt+t = Gt. For initialization, G

0

, we use a
single node in domain D

1

and K nodes in domain D
2

(We
use a high-value of K to ensure that the clusters are con-
sistent). Therefore, the structure steps are split proposals
in domain D

1

and merge steps in D
2

. The pseudo code is
shown in Algorithm 1.

4. Discovering Semantic and Visual Senses
We now adapt our generalized co-clustering algorithm to

the task of discovering multiple semantic and visual senses.
The outline of our approach is shown in Figure 2. In this
case, D

1

is the text domain and D
2

is the visual domain.
Our input data points are obtained by querying Google Im-
age Search for each NP and downloading the top-1000 web-
pages. We now describe our text and image features, the
likelihood, smoothness and the cross-domain terms.

4.1. Text Domain
Given a NP and a webpage containing the NP, we extract

x

1

i as follows: first, we use the Stanford parser [13] to per-
form syntactic parsing of the sentences. For each mention
of the NP in the webpage, we extract features which include
dependency paths of length one and two steps away from
the NP head. We also include bag-of-word (BOW) features
from the webpage. In many cases, the associated text might
contain topics irrelevant to the NP. To handle this, the BOW
representation is constructed based on the sentences which
mention the NP. Note that we also use the part-of-speech
tags as well to form the BOW representation (therefore, am-
ber ADJ is treated differently from amber NN). This leads
to a very high-dimensional feature vector; to address this,
we use an LDA topic model [6] (learned from 1M web-
pages) and project the extracted BOW features to the topics
to obtain the final unit-norm feature vector, x1

i .
Next, we discuss how each cluster is represented in the

text domain and what are the associated parameters. We
represent each text cluster with the mean feature vector of

Algorithm 1: Iterative Approach to Maximize Scoring
Function

Input: Datapoints: X where Xi =< x

1
i , x

2
i >, xd

i = feature in
Domain d

Output: Clustering in Two Domains: Yi =< y

1
i , y

2
i >, (G,⇥)

// Initialization: 1 Cluster in D1, K

Clusters in D2
G0,⇥0, Y0 InitializeGraph(X,K)
S0 S(G0,⇥0, Y0) ; // Estimate Initial Score

while Rejects<R do
// Propose New Structure Gt+1 based on

Split/Merge Proposal

Gt+1 GenerateNewProposal(Gt, Y )
// Use EM to estimate ⇥t, Yt
while Yt not converged do

// Estimate ⇥t0+1 based on Gt+1 and Yt0
⇥t0+1 TrainNewClassifiers(Gt+1,Yt0 )
// Estimate Yt0+1 based on Gt+1 and

⇥t0+1
Yt0+1 AssignPointstoClusters(Gt+1,⇥t0+1)

// Estimate new score St+1
St+1 S(Gt+1, ⇥t+1, Yt+1)
if St+1 < St then

// Reject if score decreases

Gt+1 Gt, St+1 St, Yt+1 Yt, ⇥t+1 ⇥t
Rejects Rejects+1

else
// Accept the Proposal

return Gt, ⇥t

all the cluster members. Given this representation, we sim-
ply model the likelihood term as the histogram intersection
�(·, ·) [2] of the mean and the input feature vector. We de-
fine the smoothness term as follows:

�1(x1
i , x

1
j , y

1
i , y

1
j ) =

X

i,j

�(x1
i , x

1
j )I(y1

i = y

1
j ) (1)

where �(x1

i , x
1

j ) is histogram intersection similarity and
I(·, ·) is the indicator function. This term rewards the
highly similar data points if they have the same label. The
reward is proportional to the dot-product �(·, ·) between
the two feature points.

4.2. Image Domain
To represent the visual data, we first extract image based

features. However, in the case of images, modeling the like-
lihood is quite tricky since the object location inside the
image is unknown. To overcome this problem we use the
algorithm for the clustering proposed in [10]. Given the
set of input images for a NP, this algorithm generates the
set of bounding boxes which are the location of objects in
those images. It also clusters the visual data into K clus-
ters which we use as initialization for G

0

. Once the object
location is known we represent the object (x2

i ) using HOG
features [12].

Given HOG based representation of object, we represent
each cluster in terms of a linear-SVM weight vector(✓2k).
This linear-SVM is trained by treating cluster members as
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Figure 2: We discover semantic and visual senses using the structure-EM approach shown above. Given a NP (e.g., Coach), we first
download images and webpages. We then initialize the algorithm with a single semantic sense and with visual senses initialized using
the clustering algorithm described in [9]. Then, at each iteration, semantic senses are refined and visual senses are generalized using an
iterative approach.

positive data points and bounding boxes from random im-
ages 3 as negative data points.

Therefore, the likelihood score of a point, x

2

i , com-
ing from visual cluster k is defined as the ✓

2

k
T
x

2

i . For
modeling the smoothness term, we compute the similarity
(�(x2

i , x
2

j )) between two feature vectors x

2

i and x

2

j using
the dot product on whitened HOG feature [21, 29]. Given
this similarity metric, the smoothness term is similar to the
text term where the reward is proportional to the similarity
between the two images:

�2(x2
i , x

2
j , y

2
i , y

2
j ) =

X

i,j

�(x2
i , x

2
j )I(y2

i = y

2
j ) (2)

4.3. Cross-Domain Term
The final term we need to model is the cross domain

term. This term ensures that data points which are simi-
lar in the visual domain are assigned to same cluster in the
text domain. The term is defined as follows:

�12(x2
i , x

2
j , y

1
i , y

1
j ) =

X

i,j

�(x2
i , x

2
j )I(y1

i = y

1
j ) (3)

3These random images are scene images obtained from Google Image
Search.

where �(·, ·) is the similarity defined as the dot-product of
whitened-HOG features of the datapoint i and j.

4.4. Optimization
Given these terms in the scoring function, we now op-

timize using the structure-EM approach described in Sec-
tion 3.2. In the structure step, we alternate between text
split proposals and visual merge proposals. We now de-
scribe how we generate the split proposals for nodes in the
text domain and how we generate merge proposals in the
visual domain.
Split Proposals: Given the set of text nodes V

1, at every
alternate iteration we generate proposals by splitting every
text node into two nodes. These splits are generated based
on the one-to-many mapping between the text node and the
visual nodes. Intuitively, we try to create splits by generat-
ing new possible semantic senses based on one of the visual
senses. Formally, let us suppose, a text node V 1

l is linked to
the visual nodes V

2

l0
...V

2

lm
. We generate split proposals by

selecting pair of visual nodes and training a text classifiers
such that instances belonging to one visual node is treated
as positive and the instances belonging to other visual node
is treated as negative data. This allows us to create

�m
2

�

split proposals and we select the best proposal based on the



Airbus A380 732 AK 47 654 Apple 635 Bass 804 Bean 902 Black Swan 507
Chicken 845 Coach 754 Columbia 779 Corolla 667 Daybed 763 F18 611
Falcon 831 Football 559 Jordan 662 Los Angeles Lakers 651 M 16 664 Mouse 838

Mitsubishi Lancer 663 Motorbike 850 Note 766 Robin 830 Sofa 585 Sparrow 859
Subway 803 Tuna 814 Wagon 824 Whitefish 817 Wolf 779 Yellow Tail 682

Table 1: CMU Polysemy-30 Dataset for Discovery of Visual and Semantic Senses

regularized empirical risk of the trained classifier.
Merge Proposals: Given the set of visual nodes that belong
to same semantic node, we create proposals for merging
two visual nodes based on the likelihood scores. If mem-
bers of visual cluster l receive high likelihood scores from
the classifier associated with cluster l

0 and the two nodes
are assigned to the same semantic node, then we create a
proposal to merge the nodes l and l

0.

4.5. Implementation Details
In order to handle noise in the Google search results, we

create an extra cluster/node on the vision side. This allows
us to handle outliers in the clustering process. Unlike other
clustering approaches which tend to partition the whole fea-
ture space, our approach only focuses on extracting seman-
tic and visual senses from the subset of data which is con-
sidered high confidence in either domain. The low confi-
dence data points are assigned to the noise cluster and are
not considered part of the scoring function.

Some of the data points also have missing data from one
domain. For example, we might have images but no text
associated with it. Instead of ignoring such data points, we
prefer to assign them based on image features alone. This
is necessary as in many cases our visual clusters are data
starved and using these extra data points help us learn better
visual classifiers.

5. Experimental Results
We now show the effectiveness of our co-clustering al-

gorithm using extensive experimental analysis. We perform
four different experiments and implement several baselines.
First, we introduce a new challenging dataset for this task
(CMU Polysemy-30). This dataset consists of 30 NPs and
⇠1000 webpages for each NP are downloaded from Google
Image Search. We do a clean up step and after accounting
for broken links, webpages not reachable, we end up with
⇠750 images per NPs. Table 1 shows the list of NPs and the
number of data points for each NP. The dataset is publicly
available for download4.

In order to evaluate the performance of the sense extrac-
tion we manually listed all the possible semantic senses for
each NPs. We then manually labeled ⇠5600 instances with
one of the listed semantic senses. We use accuracy (AC)
as one way to measure the clustering performance. Before
evaluation, we first obtain a mapping between the ground
truth clusters and clusters obtained using Kuhn-Munkres al-
gorithm [33]. We also use the standard normalized mutual

4
http://www.neil-kb.com/poly.html

information (NMI) [30] metric to evaluate our clustering.
Note that higher mutual information implies better cluster-
ing performance.

To overcome the human labeling bottleneck, we also
perform another experiment which creates pseudo-words to
evaluate sense disambiguation [40] (Sec 5.3). Next, we per-
form a retrieval experiment on the MIT ISD dataset [37]
which has 5 polysemous concepts (Sec 5.4). Finally, we
perform a large-scale experiment where we run our algo-
rithm on ⇠2000 NPs (Sec 5.5). The list of these concepts is
obtained using the NEIL knowledge base [9].

5.1. Baselines
We compare the performance of our approach against

multiple baselines which use text and image features. For
all the baselines, we use two versions: pre-defined num-
ber of clusters (Fixed) and using Eigen-Gap criterion [43]
(Eigen) to automatically compute the number of clusters.
Our baselines are:
Spectral Clustering on TF-IDF Features (TF-IDF): Our
first baseline uses text based features only and constructs a
feature representation of a webpage using TF-IDF [30] fea-
tures over the context words. These features are used in
conjunction with cosine-distance to create an affinity graph.
Finally, we perform spectral clustering over this affinity
graph.
Spectral Clustering on BOW (BOW): Our second base-
line uses the BOW text features to represent each webpage.
Similar to our text feature construction, we build BOW over
the word and their Part-of-Speech tags. We use histogram
intersection as the similarity metric to create the affinity
graph.
Image BOW over SIFT and Color Histogram (I-BOW):
Our third baseline uses image-based features. Specifically,
we use SIFT and Color Histogram features. To create a
BOW representation, we perform vector quantization with
1000 words for SIFT and 400 words for Color histogram.
Given this visual BOW representation, we create an affinity
graph using histogram intersection similarity metric.
Spectral Clustering on Topic Model based Representa-
tion: Our fourth baseline uses text-based features used in
our algorithm to represent a webpage and histogram inter-
section is used as the similarity metric to create the affinity
graph. Note that this baseline is an unsupervised variant of
the approach taken by [37], which uses extra information
(WordNet) to determine the underlying senses.
Clustering in Joint Space: As our final set of baselines,
we implemented the algorithms of [24, 45] which perform
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Figure 3: Examples of semantic and visual sense discovery of our algorithm. For example, our algorithm automatically discovers two
semantic senses for Bass: fish and musical instrument. For Bean, it discovers semantic senses of jelly beans, bean food and Mr. Bean. Last
two examples in the third row show two failure cases.

clustering in the joint space of image and text features. [24]
uses BOW for both images and text, while [45] uses topic
model based representations.

The code for [28] was not available and requires click-
through data to train which is proprietary. But we did com-
pare qualitatively against Google Image Search query ex-
pansions and use human annotators to quantitatively com-
pare performance against them.

5.2. CMU Polysemy-30 Dataset
Qualitative Results: We first show qualitative performance
of our algorithm. Figure 3 shows the qualitative result of our
clustering algorithm on some NPs from CMU Polysemy-
30: Yellow Fish, Wagon, Subway, Bass, Bean, M16 and
Tuna. Notice how our algorithm discovers the two semantic
meanings of Subway: the metro and the sandwich brand.
Specifically, note the text features in the word clouds. For
the subway (metro) sense, the main distinguishing features
include: New, York, Station, City, tracks, line, transit. For
the subway (sandwich) sense, the main distinguishing text
features are: sandwich, Surfers, restaurants, art, food, sand-
wiches. Also notice the associated visual senses. For ex-
ample, for subway(metro), the visual senses are the station
and the metro train itself. Similarly, for subway(sandwich

chain), visual senses include the subway logo and the sand-
wich itself.

Another interesting example is the M16 shown on mid-
dle right. Our algorithm perfectly discovers the right se-
mantic senses: nebula, music album and the rifle. Notice
the associated text features for each semantic sense. For
the nebula sense, the most important words are: Eagle (also
known as eagle nebula), Nebula, Telescope, cluster etc. For
the music album sense, the important words are preview,
buy and iTunes. Figure 3 also shows a couple of cases (last
two, Mouse and Chicken) where our algorithm fails to dis-
cover all the associated senses.

We also qualitatively compared to Google Image Search
query expansions. For example, for Whitefish NP, Google
misses the lighthouse location sense and only captures the
resort sense. (see Figure 4).
Quantitative Results: We now discuss the quantitative re-
sults and compare the performance of our algorithm against
several baselines. Table 2 shows the comparative perfor-
mance for semantic sense discovery. As the quantitative re-
sults indicate, our approach outperforms all the baselines by
a significant margin. Note that our approach automatically
discovers the true number of semantic senses and outper-
forms the baselines even when the true number of senses
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Figure 4: Comparison with Google Query Expansion for NP
Whitefish.

are provided to the baselines (fix the number of clusters be-
fore spectral clustering) due to noise.

For the evaluation of visual senses, since it is hard to
obtain ground truth labels, we computed the purity (how
many instances belong to the same semantic sense) for all
the visual senses obtained by [10] and our approach. As ex-
pected, our algorithm improves purity over iterations, giv-
ing 3% boost in clustering performance. The boost is signif-
icantly higher when two different senses have similar visual
appearances (Apple logo looks very similar to apple fruit).

5.3. Pseudo-word Based Evaluation
One bottleneck for the evaluation of sense disambigua-

tion algorithms is the requirement of human labeling. A
neat way out of this is the commonly used approach of
pseudo-words [40]. More specifically, pseudo polyse-
mous NPs can be created by combining together multiple
single-sense NPs. For example, we can combine the web-
pages downloaded for Accord and Boeing (non-polysemous
words) and treat them as retrieval for a pseudo polysemous
word “accord-boeing”. Now, by construction, we have the
labels for semantic sense since the webpages for accord are
sense 1 and webpages for boeing are sense 2.

For our experiments, we combine four NPs: accord,
boeing, tire, cricket ball. For these four NPs, there are
24�1 = 15 possible combinations with these pseudo words
having somewhere between 1-4 semantic senses per word.
Table 3 show the comparative performance of our approach
against all the baselines. Again, in this case, our approach
outperforms all the baselines significantly.

5.4. MIT ISD Dataset
Next, we apply our unsupervised approach for the task

of re-ranking image search engine outputs. We use MIT
ISD Dataset [37], which was collected automatically from
the Yahoo Image Search. It consists of 5 NPs: Bass, Face,
Mouse, Speaker and Watch. For image retrieval, one tar-
get sense is picked for each NP: the fish, the human face,
the pointing device, the audio device, and the timepiece.
We evaluated the retrieval performance with Area Under the
(ROC) Curve. Compared to Yahoo Image Search, our unsu-
pervised approach is able to obtain 20% performance gain
on average.

AC NMI
Fixed Eigen Fixed Eigen

TF-IDF 79.31 76.66 11.04 19.65
BOW 77.94 70.79 15.97 12.64

I-BOW 77.86 70.17 6.84 8.04
[37] 80.52 73.21 18.69 17.75
[24] 78.39 79.89 8.96 27.00
[45] 80.62 73.13 19.03 18.26

Our Approach 86.70 34.11

Table 2: Quantitative Evaluation on the CMU Polysemy-30
Dataset.

AC NMI
Fixed Eigen Fixed Eigen

TF-IDF 53.69 49.12 10.32 6.07
BOW 58.98 68.95 15.97 31.64

I-BOW 61.66 57.47 22.03 16.03
[37] 70.04 77.20 46.55 44.52
[24] 54.83 55.52 12.80 18.72
[45] 69.08 72.83 32.80 43.33

Our Approach 83.89 53.81

Table 3: Quantitative Evaluation on the Pseudo-NP Dataset.

5.5. Large-Scale Sense Discovery Experiments

Finally, our sense discovery approach is linear in the
number of categories and therefore scales reasonably well.
As an extension of the CMU Polysemy-30 dataset, we also
evaluate our algorithm on 1.8 million images and websites
from Google Image search, using a list of ⇠2000 NPs from
NEIL [9] as queries. We randomly evaluated the sense dis-
covery for 100 keywords and found our algorithm can re-
cover 82% of senses from Wikipedia.

6. Conclusion

This paper presents an approach for co-clustering in two
domains. Most co-clustering algorithms make the simplify-
ing assumption that there exists a one-to-one mapping be-
tween two domains. In our proposed algorithm, we relax
this assumption and allow one-to-many mapping which is
useful when the granularity of clustering in two domains
is different. We apply our co-clustering algorithm for the
task of discovering multiple semantic and visual senses of
a given NP. We show that our algorithm is effective in not
only figuring out the right senses and clustering the data but
it also generates the right mapping between semantic and
visual senses. We compare our performance against several
baselines and show significant gains over these baselines.
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