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Image restoration is a long-standing problem in low-level computer vision
with many interesting applications. The goal of this work is to propose a
simple but effective approach with both high computational efficiency and
high restoration quality. To that end, we extend conventional nonlinear reac-
tion diffusion models by several parametrized linear filters as well as several
parametrized influence functions.

In the fully discrete case u ∈ RN , the conventional Perona-Malik type
nonlinear diffusion process [5] is formulated as the following discrete PDE
with an explicit finite difference scheme
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where matrices ∇x and ∇y ∈RN×N are finite difference approximation of the
gradient operators in x-direction and y-direction, respectively and ∆t denotes
the time step. Λ(ut) ∈ RN×N is defined as a diagonal matrix
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where function g is known as edge-stopping function. If ignoring the cou-
pled relation between ∇xu and ∇yu, the P-M model can be also written as the
second formula on the right side in (1), where φ(∇iu)= (φ(∇iu)1, · · · ,φ(∇iu)N)

>

∈ RN with function φ(z) = zg(z), known as influence function.
By introducing more linear filters and adjustable influence functions,

our proposed nonlinear reaction diffusion model is formulated as
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where Ki ∈RN×N is a highly sparse matrix, implemented as 2D convolution
of the image u with the filter kernel ki, i.e., Kiu ⇔ ki ∗ u, Ki is a set of
linear filters and Nk is the number of filters. The specific formulation for the
reaction term ψ(u) depends on applications. In our work, instead of making
use of the well-chosen filters and influence functions, we train the nonlinear
diffusion process for specific image restoration problem, including both the
linear filters and the influence functions.

In this paper, we train our models for two representative image restora-
tion problems: (1) image denoising with Gaussian noise and (2) JPEG block-
ing artifacts reduction. We use a loss minimization scheme to train the
model parameters Θt = {λ t ,φ t

i ,k
t
i} for each stage t of the diffusion pro-

cess, given S training samples { f (s)n ,u(s)gt }S
s=1, where f (s)n is a noisy input

and u(s)gt is the corresponding ground truth clean image. The training task is
to minimize the cost function

L(Θ1,··· ,T ) =
S

∑
s=1

`(u(s)T ,u(s)gt ) =
S

∑
s=1

1
2
‖u(s)T −u(s)gt ‖2

2 , (3)

where the loss function only depends on uT (the output of the final stage T ).
For image denoising, the diffusion equation is given as
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We trained the above diffusion model for the Gaussian denoising task. In our
work, we mainly considered two trained reaction diffusion (TRD) models,
namely TRDT

5×5 and TRDT
7×7, where TRDT

m×m denotes a nonlinear diffu-
sion process of stage T with filters of size m×m.

The performance of the trained models is summarized in Table 1, to-
gether with a selection of recent state-of-the-art denoising algorithms. The
run time performance is presented in Table 2.

In summary, our proposed nonlinear diffusion process has several re-
markable benefits as follows:
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Method
σ

St.
σ = 15

15 25 TRD5×5 TRD7×7
BM3D [2] 31.08 28.56 2 31.14 31.30
LSSC [4] 31.27 28.70 5 31.30 31.42
EPLL [7] 31.19 28.68 8 31.34 31.43
opt-MRF [1] 31.18 28.66 σ = 25
– – – TRD5×5 TRD7×7
WNNM [3] 31.37 28.83 2 28.58 28.77
CSF5

5×5 [6] 31.14 28.60 5 28.78 28.92
CSF5

7×7 [6] 31.24 28.72 8 28.83 28.95

Table 1: Average PSNR (dB) on 68 images from for image denoising with
σ = 15,25.

Method 2562 5122 10242 20482 30722

BM3D [2] 1.1 4.0 17 76.4 176.0
CSF5

7×7 [6] 3.27 11.6 40.82 151.2 494.8
WNNM [3] 122.9 532.9 2094.6 – –

TRD5
5×5

0.51 1.53 5.48 24.97 53.3
0.43 0.78 2.25 8.01 21.6

0.005 0.015 0.054 0.18 0.39

TRD5
7×7

1.21 3.72 14.0 62.2 135.9
0.56 1.17 3.64 13.01 30.1
0.01 0.032 0.116 0.40 0.87

Table 2: Run time comparison for image denoising (in seconds) with dif-
ferent implementations. (1) The run time results with gray background
are evaluated with the single-threaded implementation on Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz; (2) the blue colored run times are obtained
with multi-threaded computation using Matlab parfor on the above CPUs;
(3) the run time results colored in red are executed on a NVIDIA GeForce
GTX 780Ti GPU. We do not count the memory transfer time between
CPU/GPU for the GPU implementation (if counted, the run time will nearly
double)

1) It is conceptually simple as it is just a time-dynamic nonlinear reac-
tion diffusion model with trained filters and influence functions;

2) It has broad applicability to a variety of image restoration problems.
In principle, all existing diffusion based models can be revisited with
appropriate training;

3) It yields excellent results for several tasks in image restoration, in-
cluding Gaussian image denoising, and JPEG deblocking;

4) It is computationally very efficient and well suited for parallel com-
putation on GPUs.
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