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Image restoration is a long-standing problem in low-level computer vision
with many interesting applications. The goal of this work is to propose a
simple but effective approach with both high computational efficiency and
high restoration quality. To that end, we extend conventional nonlinear reac-
tion diffusion models by several parametrized linear filters as well as several
parametrized influence functions.

In the fully discrete case u € RV, the conventional Perona-Malik type
nonlinear diffusion process [5] is formulated as the following discrete PDE
with an explicit finite difference scheme
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where matrices V and V,, € RV*V are finite difference approximation of the

gradient operators in x-direction and y-direction, respectively and Ar denotes

the time step. A(u;) € RNV is defined as a diagonal matrix
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where function g is known as edge-stopping function. If ignoring the cou-
pled relation between Vyu and Vyu, the P-M model can be also written as the

second formula on the right side in (1), where ¢ (Viu) = (¢ (Vit)1,- -+, 0 (Viu)y) "

€ RY with function ¢ (z) = zg(z), known as influence function.
By introducing more linear filters and adjustable influence functions,
our proposed nonlinear reaction diffusion model is formulated as
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where K; € RV*¥ is a highly sparse matrix, implemented as 2D convolution
of the image u with the filter kernel k;, i.e., Kju < k; xu, K; is a set of
linear filters and Ny is the number of filters. The specific formulation for the
reaction term y/(u) depends on applications. In our work, instead of making
use of the well-chosen filters and influence functions, we train the nonlinear
diffusion process for specific image restoration problem, including both the
linear filters and the influence functions.

In this paper, we train our models for two representative image restora-
tion problems: (1) image denoising with Gaussian noise and (2) JPEG block-
ing artifacts reduction. We use a loss minimization scheme to train the

model parameters ®; = {A', ¢!, k!} for each stage  of the diffusion pro-
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and ug is the corresponding ground truth clean image. The training task is
to minimize the cost functign
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where the loss function only depends on ur (the output of the final stage T).
For image denoising, the diffusion equation is given as
Nk
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We trained the above diffusion model for the Gaussian denoising task. In our
work, we mainly considered two trained reaction diffusion (TRD) models,
namely TRDSTXS and TRD7T «7» Where TRD? .., denotes a nonlinear diffu-
sion process of stage T with filters of size m x m.
The performance of the trained models is summarized in Table 1, to-
gether with a selection of recent state-of-the-art denoising algorithms. The
run time performance is presented in Table 2.
In summary, our proposed nonlinear diffusion process has several re-
markable benefits as follows:
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c oc=15
Method 5 25 °" TTRDs.; TRD;.;
BM3D 2] 31.08 2856 W20 3114 3130
LSSC [4] 3127 2870 | 5 3130 3142
EPLL [7] 3119 2868 | 8 3134 3143
opt-MRF[1] 3118 28.66 =25
- - - TRDs5yxs TRD7x7
WNNM [3] 3137 2883 727 2858 2877
CSFi  [6] 3114 2860 5 2878 2892
CSF.,[6] 3124 2872 8 2883 2895

Table 1: Average PSNR (dB) on 68 images from for image denoising with
o =15,25.

Method 2567 5122 10247 20487 30727
BM3D[2] 11 40 17 764 1760
CSES_,[6] 327 116 4082 1512 49438
WNNM [3] 1229 5329 20946 - -
051 153 548 2497 533
TRDI s 043 078 225 801 216
0.005 0015 0054 018  0.39
121 372 140 622 1359
TRDS ., 056 117 364 1301  30.
001 0032 0116 040  0.87

Table 2: Run time comparison for image denoising (in seconds) with dif-
ferent implementations. (1) The run time results with gray background
are evaluated with the single-threaded implementation on Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz; (2) the blue colored run times are obtained
with multi-threaded computation using Matlab parfor on the above CPUs;
(3) the run time results colored in red are executed on a NVIDIA GeForce
GTX 780Ti GPU. We do not count the memory transfer time between
CPU/GPU for the GPU implementation (if counted, the run time will nearly
double)

1) It is conceptually simple as it is just a time-dynamic nonlinear reac-
tion diffusion model with trained filters and influence functions;
2) It has broad applicability to a variety of image restoration problems.
In principle, all existing diffusion based models can be revisited with
appropriate training;
3) It yields excellent results for several tasks in image restoration, in-
cluding Gaussian image denoising, and JPEG deblocking;
4) It is computationally very efficient and well suited for parallel com-
putation on GPUs.
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