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Figure 1: What is encoded by a CNN? The figure shows five possible
reconstructions of the reference image obtained from the 1,000-dimensional
code extracted at the penultimate layer of a reference CNN[3] (before the
softmax is applied) trained on the ImageNet data. From the viewpoint of the
model, all these images are practically equivalent. This figure is best viewed
in color/screen.

Several image understanding and computer vision methods build on
image representations such as textons [4], histogram of oriented gradients
(SIFT [5] and HOG [2]), bag of visual words [1][8], sparse [12] and local
coding [11], Fisher Vectors [6], and, lately, deep neural networks, particu-
larly of the convolutional variety [3, 7, 13]. However, despite the progress in
the development of visual representations, their design is still driven empir-
ically and a good understanding of their properties is lacking. While this is
true of shallower hand-crafted features, it is even more so for the latest gen-
eration of deep representations, where millions of parameters are learned
from data.

In this paper we conduct a direct analysis of representations by charac-
terising the image information that they retain (Fig. 1). We do so by model-
ing a representation as a function Φ(x) of the image x and then computing an
approximated inverse φ−1, reconstructing x from the code Φ(x). A common
hypothesis is that representations collapse irrelevant differences in images
(e.g. illumination or viewpoint), so that Φ should not be uniquely invertible.
Hence, we pose this as a reconstruction problem and find a number of possi-
ble reconstructions rather than a single one. By doing so, we obtain insights
into the invariances captured by the representation.

Our contributions are as follows. First, we propose a general method
to invert representations, including SIFT, HOG, and CNNs. Crucially, this
method uses only information from the image representation and a generic
natural image prior, starting from random noise as initial solution, and hence
captures only the information contained in the representation itself. We dis-
cuss and evaluate different regularization penalties as natural image priors.
Second, we show that, despite its simplicity and generality, this method re-
covers significantly better reconstructions from HOG compared to recent
alternatives [10]. As we do so, we emphasise a number of subtle differences
between these representations and their effect on invertibility. Third, we ap-
ply the inversion technique to the analysis of recent deep CNNs, exploring
their invariance by sampling possible approximate reconstructions. We re-
late this to the depth of the representation, showing that the CNN gradually
builds an increasing amount of invariance, layer after layer (See Fig. 2).
Fourth, we study the locality of the information stored in the representations
by reconstructing images from selected groups of neurons, either spatially
or by channel.

The neural network models for HOG and DSIFT and the MATLAB
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Figure 2: CNN reconstruction. Reconstruction of a test image from CNN
features. This figure is best viewed in color/screen.

code for this paper are available from http://www.robots.ox.ac.
uk/~vgg/research/invrep/index.htm. We use the MatConvNet
toolbox [9] for implementing convolutional neural networks.
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