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Abstract

Arguably the most common cause of image degradation
is compression. This papers presents a novel approach to
restoring JPEG-compressed images. The main innovation
is in the approach of exploiting residual redundancies of
JPEG code streams and sparsity properties of latent images.
The restoration is a sparse coding process carried out joint-
ly in the DCT and pixel domains. The prowess of the pro-
posed approach is directly restoring DCT coefficients of the
latent image to prevent the spreading of quantization errors
into the pixel domain, and at the same time using on-line
machine-learnt local spatial features to regulate the solu-
tion of the underlying inverse problem. Experimental results
are encouraging and show the promise of the new approach
in significantly improving the quality of DCT-coded images.

1. Introduction

One of significant advances in the fields of computer vi-
sion and image processing is sparsity-based visual signal
analysis and processing. In particular, sparsity-based im-
age restoration has been proven highly successful for a wide
range of applications, such as denoising, deblurring, inter-
polation, color demosaicking, etc., as reported in a large
number of research papers [30, 11, 19, 29, 12, 21, 22]. In
comparison relatively few papers were devoted to sparsity-
based restoration of compressed images [13, 15, 5, 18], de-
spite the fact that the most common cause of image degra-
dation in practice is compression.

In image compression products and systems, by far the
most commonly used compression technique is that of dis-
crete cosine transform (DCT), which is adopted in popular
compression standards JPEG [27], MPEG [1], H.264/AVC
[28] and HEVC [25]. Motivated by the practical importance
this research focuses on the restoration of DCT-coded im-
ages.

Apparently, following the tradition of assuming degra-
dations to be signal independent in image restoration litera-
ture, existing works on restoring compressed images mod-
el compression noises to be signal independent. Examples
are uniform noises in the DCT domain [24], white Gaus-
sian noises (WGN) in spatial domain [23] [20], or gener-
alized Gaussian noises [33]. Unfortunately, compression-
induced degradations, mostly in the form of quantization
noises, are far from being white and signal-independent as
taken for granted in papers on other image restoration tasks
[26,9, 6, 11, 21]. Current inaccurate modeling of compres-
sion degradations limits the restoration performance.

In this work we do away with any preassumption on
compression noises and aim to repair signal-dependent
degradations via a novel data-driven approach. The new
restoration approach performs a joint sparse coding in both
DCT domain and pixel domain. As natural images are sta-
tistically non-stationary with spatially varying sparse repre-
sentations, sparse coding is performed on individual DCT
patches, one at a time, so that the restoration can adapt to
local statistics. For each restoration patch two dictionar-
ies of PCA bases are learnt in the DCT and pixel domains
respectively, using sample sets of approximately matched
quantized DCT code blocks. The two learnt dictionaries are
used to generate two locally adaptive sparse representation-
s that jointly determine the restored image patch. Fig. 1
depicts the architecture of the proposed image restoration
system, in which the degraded input is the decompressed
(hard-decoded) image and the restored output is called soft-
decoded image. In the compression literature, the task of
repairing hard-decoded results is commonly referred to as
soft decoding.

The premise of soft decoding is that practical image
compression methods, such as popular international stan-
dards JPEG, JPEG 2000 [2], H.264/AVC, HEVC etc., are
not information theoretically optimal. Therefore, the result-
ing compression code streams still have residual redundan-
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Figure 1. Block diagram of the proposed data-driven soft decoding system in dual transform-pixel domain.

cies; it is possible, at least theoretically, to improve the re-
construction by reestimating the original signal by exploit-
ing the knowledge ignored or underused by the encoder. In
particular, in the ubiquitous local DCT block-based cod-
ing framework, correlations exist between different code
blocks, because natural images have similar local struc-
tures due to self-similarity but the code block size is not
large enough to capture the underlying statistical redundan-
cy. These inter-block correlations, which are not exploited
by the encoder, can be used by the decoder to increase the
reconstruction fidelity without receiving any extra bits.

Up to now all existing soft decoding techniques work ei-
ther in the pixel domain [4, 32, 31, 34, 8] or in the DCT
domain [7, 17, 16, 14]. But the restoration in either do-
main has its own drawbacks. As the pixel domain restora-
tion works with hard-decoded image, the inverse DCT is
required; this will propagate an isolated quantization error,
which is originally confined to a DCT coefficient, to all pix-
els of the corresponding DCT block. To make the matter
worse, an aggressively quantized DCT coefficient can pro-
duce structured errors in the pixel-domain that correlate to
the latent signal, complicating the restoration task. On the
other hand, the pure DCT-domain restoration is severely re-
stricted by the fact that the compression process set most
of high frequency coefficients to zero, making the recovery
of edges and fine textures impossible. In the proposed dual
domain soft decoding, the advantages and disadvantages of
the pixel-domain and DCT-domain restorations are made to
complement one the other. The design motive, which is also
a main contribution of this work, is to exploit residual re-

dundancies (e.g., inter-DCT-block correlations) in the DCT
domain without spreading errors into the pixel domain, and
at the same time recover high frequency information with
machine learning driven by a large training set. A unique-
ness of our machine learning method for soft decoding is in
its feature selection: the quantized DCT code block rather
than the (or some attributes of) corresponding hard-decoded
pixel patch is used as the feature vector. Directly associating
the DCT code block to the underlying latent image block
isolates the degradation cause at its root and hence simpli-
fies the learning task. Also, the soft decoding performance
is further boosted by incorporating the known boundaries
of quantizer cells, which is a strong piece of available side
information in the DCT code stream, into the new sparsity-
based restoration scheme.

The rest of the paper is organized as follows. Section II
details the proposed technique of sparse coding in the DCT
domain; here the main novelty is the collecting and clus-
tering of a sample set created by performing forward DCT
of overlapped pixel patches in the hard-decoded image. By
breaking free from the rigid DCT code block tessellation the
proposed sparse coding process can fully benefit from the
self-similarities of the latent image and remove the block-
ing compression artifacts. In Section IV we extend sparse
coding from the DCT domain to the dual DCT-pixel domain
and finally cast the dual sparse coding-based restoration of
compressed images as a mixed £ -/ minimization problem.
The highlight of this section is the new data-driven learning
method for repairing distorted high-frequency image fea-
tures. Section V reports experimental results, and Section
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VI concludes the paper.

2. Sparsity-based Restoration of DCT Coeffi-
cients

As outlined in the introduction, we advocate to restore
DCT coefficients of the latent image, i.e., suppressing quan-
tization noises directly in the DCT domain rather than de-
noising in the pixel domain after inverse DCT. This con-
fines the quantization errors to individual DCT coefficients
instead of propagating them over a wide area of pixels.

2.1. Adaptive DCT Dictionary Learning

We divide the hard decoded JPEG image I into a set of
overlapped patches {X;} of size 8 x 8, and perform trans-
formation and quantization on these blocks to get the corre-
sponding DCT patches {y; }; the resulting DCT blocks con-
stitute the online training data set. Here we emphasize that
the said training pixel patches {X; } be extracted in arbitrary
positions that misalign with the DCT code block boundaries
of the JPEG standard. This is an important detail to destroy
artificial structures of JPEG compression method and re-
move much of the notorious DCT blocking artifacts.

To build the sparsity dictionary for restoring the current
DCT patch y, we select from the training set {y;} a set of
sample patches

Y={7i|lly: —yoll3 <7}, (D

where 7 is a threshold. We stack the vectors of collect-
ed patches into a matrix denoted by Y. Then, we learn
an adaptive sub-dictionary ® that is most relevant to Y by
applying principal component analysis (PCA) on Y. PCA
generates the dictionary @ whose atoms are the eigenvec-
tors of the covariance matrix of Y. In this way, we construct
one sub-dictionary per DCT patch separately.

2.2. Restoration in Transform Domain

After getting the dictionary, the sparse representation
vector « of the current restorated DCT patch y( can be ob-
tained by:

o* :argminHYO—'I>a\|§+)\||a|\l. )
@

In addition to the sparsity image prior, the DCT im-
age code stream contains strong pieces of side information
on the original image that should be exploited to improve
restoration performance. For each coding DCT coefficient
vo(u,v), u and v being the indices of the corresponding 2D
subband in DCT domain, we know its quantization interval

(k.. dY,) ie.,

0, < yo(u,v) < qf,. 3)

These inequalities can be incorporated into (2) to further
confine the solution space and improve the restoration per-
formance. Finally, we formulate our problem of soft de-
coding in transform domain as the following constrained
convex optimization problem:

arg min ||y —‘I’a\|§+/\||0‘”17 (4)
(o7
st., qf <®a=<qY,

where =< denotes the operation of element-wise compari-
son, g~ and qY are vectors containing bound values of the
quantization interval.

3. Sparsity-based Restoration in Dual

Transform-Pixel Domain

The restoration in the DCT domain only cannot fully
recover the high-frequency features that are discarded or
distorted by JPEG quantization of DCT coefficients. This
weakness can be mitigated by machine learning that allows
incorporation of high-frequency priors of uncompressed
images in restoring JPEG-compressed images.

3.1. Adaptive Pixel Dictionary Learning

The learning uses a training set of uncompressed images
and extracts from the set coupled patches in pixel and DCT
domains. Specifically, 8 x 8 pixel blocks {x;} drawn from
the training images are DCT transformed and quantized as
in JPEG compression, generating corresponding quantized
DCT coefficient blocks {y;}. This creates a sample set of
paired pixel and DCT patches {x;,y;}-.

In order to restore a pixel patch xq that is coded by JPEG
into DCT block yy, a dictionary can be constructed using
the training data in set {x;,y;}. Similarly to dictionary
learning in the DCT domain, we collect a set of pixel patch-
es x; that have their DCT representations sufficiently close
to yo:

X = {xillly: = yoll3 <7}, o)

and perform PCA on X. The resulting PCA basis vectors
constitute the dictionary W that gives the input patch x a
sparse representation 3, namely,

B = arg min Ix0 — ®B5 + MBI, (6)

3.2. Restoration in Dual Domain

Given the two online learnt dictionaries ® and ¥ in
transform and pixel domain, we jointly search for two s-
parse code vectors « and 3 that best explain the observed
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Figure 2. Six test images

DCT patch y in the dual domain:

. lyo — @3 + A el
arg min o 3 ,
(@) | || T ®a— 8|, + As (18I,

st, gt <®a=<qY,

@)
where T~ is the inverse discrete cosine transform; A1, As
and Az are Lagrange multipliers. Joint restoration in the
DCT and pixel domain allows the two sparse representa-
tions « in dictionary ® and 3 in dictionary ¥ to cross
validate each other, enhancing the quality of soft decoded
image patches. Note that the sparsity dictionaries ® and
W are made adaptive to each input patch yq via the on-line
learning described above.

Defining o = [y00]", 8 = [aB]”, and D =

i

VAT &
can be simplified as follows:

0 o .
Vo }, the above objective function

A 2
arg min |yo —DO|5 + A[0]],,

8
s.t., [q¥ 0]T <D0 =<[qV 0]7, ®
where for simplicity we set A\ = Ay = A3. Thisis a
mixed ¢1-f> minimization problem, which can be effective-
ly solved by the iterative shrinkage algorithm [10] with the
inequality as constraint for each iteration. Upon solving (8)
and obtaining the optimal sparse coding vectors {3} for
all DCT patches to be restorated, the whole image can be
reconstructed by averaging all of the reconstructed patches:

N -1 /N
1= (ZR?R1> (ZRzT‘I’zﬁf> Q)

i=1 =1

where NV is the number of all sampled patches, R; is the
matrix extracting patch y; from I at location i, ¥, is the
corresponding dictionary in pixel domain of y;.

4. Experimental Results

In this section, experimental results are presented to
demonstrate the superior performance of the proposed
dual-domain joint estimation approach for restoring JPEG-
compressed images.

The new approach is compared with: 1) the PSW algo-
rithm [32], which is a state-of-the-art soft decoding method
for JPEG-compressed images; 2) the well-known denois-
ing algorithm BM3D [9], because the restoration of com-
pressed images can be viewed as a denoising problem, in
which the noises are quantization errors; 3) two sparsity-
based restoration methods: KSVD [3] and DicTV [5].
KSVD is a well-known sparse coding framework. Most
existing sparsity-based compressed image restoration algo-
rithms, such as [13, 15], are based on the general frame-
work of KSVD. DicTV is a very recent sparsity-based com-
pressed image restoration algorithm. The reported compari-
son group includes six widely used test images in the litera-
ture of image compression, which are presented in Fig. 2.
For the uncompressed training set used to get the pixel-
domain dictionary, we randomly select five images from
the Kodak Lossless True Color Image Suite!. Certainly, the
training set does not have any overlap with the test set.

Fig. 3 plots the PSNR curves of the compared algorithms
on the six test images, which are coded by JPEG compres-
sion standard with five quality factors (QF): 5, 10, 15, 20
and 25, respectively. Quality factors, which range from 1
to 100, are indexes of a set of quantization matrixes. The
large QF values, the less quantization noises. The PSNR
curves clearly show that the proposed technique achieves
the best restoration performance for all test images on al-
1 quality factors. Compared with the PSW algorithm, the
new technique enjoys a PSNR gain up to 2.18dB. Note B-
M3D needs the knowledge of the variance of noises, and in
experiments, we feed BM3D the true values of quantization
error variances (which are trained using offline samples), al-
though in practice this may not always be possible. In this
regard, the results of BM3D shown in Fig. 3 should only
be treated as a performance upper bound. Even so, the new
technique method outperforms BM3D and achieves PSNR
gains up to 1.32dB. The new technique also makes similar
performance gains over other sparse coding based methods.

In addition to its superior performance in objective fideli-
ty metric, the new JPEG restoration technique also appears
to obtain better perceptual quality of the restored images.
The reader is invited to examine and compare the restored
JPEG images by different methods in Fig. 4, Fig. 5, Fig. 6

! http://rOk.us/graphics/kodak/
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Figure 3. PSNR vs JPEG QF of different restoration methods.
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Figure 4. Comparison of tested methods in visual quality on Butterfly at QF=5. The corresponding PSNR values (in dB) are also shown.
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Figure 5. Comparison of tested methods in visual quality on Leaves at QF=5. The corresponding PSNR values (in dB) are also shown.

and Fig. 7. When QF is 5, the quantization noise is se-
vere, the JPEG-compressed images have very poor subjec-
tive quality. The images reproduced by PSW and BM3D
suffer from highly visible noises that accompany edges and
textures. KSVD and DicTV can suppress most of blocking
artifacts, but there are still noticeable artifacts along edges.
This is because, in KSVD and DicTV, patches are encoded
independently. Therefore, similar patches sometimes admit
very different estimates due to the potential instability of s-
parse decompositions, which can result in noticeable recon-
struction artifacts. The proposed dual domain restoration
approach can effectively mitigate this problem. The im-
ages restored by our method are much cleaner, in which the
structures and sharpness of edges and textures are well pre-
served. The proposed method can also remove DCT block-
ing artifacts in smooth areas completely, and is largely free
of the staircase and ringing artifacts along edges.

5. Conclusion

A novel data-driven sparsity-based approach is proposed
for the restoration of JPEG-compressed images in the dual
DCT-pixel domain. The main technical contribution of this
work is the combined use of dual dictionaries learnt respec-
tively using samples drawn from the hard-decoded JPEG in-
put image and samples drawn from uncompressed training
images; both dictionaries adapt to the pixel patch being re-

stored. Experimental results demonstrate the efficacy of the
proposed JPEG restoration approach. The reported research
findings reveal so-far under-utilized potential of improving
DCT-compressed images and videos via sophisticated post-
processing after decompression.
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