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Figure 1: In SIFT (top) isolated scales are selected (a) and the descriptor

constructed from the image at the selected scale (b) by computing gradient

orientations (c) and pooling them in spatial neighborhoods (d) yielding

histograms that are concatenated and normalized to form the descriptor (e).

In DSP-SIFT (bottom), pooling occurs across different domain sizes (a):

Patches of different sizes are re-scaled (b), gradient orientation computed

(c) and pooled across locations and scales (d), and concatenated yielding a

descriptor (e) of the same dimension of ordinary SIFT.

A “cell” of a SIFT descriptor, computed on an image I in a region of size

σ̂ around a location x, can be written as

hSIFT(θ |I, σ̂)[x] =
∫

Nε (θ −∠∇I(y))Nσ̂ (y− x)dµ(y) (1)

where dµ(y)
.
= ‖∇I(y)‖dy, θ is the independent variable, ranging from 0

to 2π , corresponding to an orientation histogram bin of size ε , and σ̂ is the

spatial pooling scale. The kernel Nε is bilinear of size ε and Nσ̂ separable-

bilinear of size σ̂ . Both the location x and the scale σ̂ are typically sampled

by a co-variant detector, or regularly as in “dense SIFT.” Spatial pooling,

interpreted as local marginalization against the kernel Nσ̂ (y− x), affords

insensitivity to small translations around the sampled location x.

But while translations are locally marginalized around the sample x,

changes of scale around the sampled σ̂ are not.

DSP-SIFT is designed to obviate this asymmetry of treatment, by locally

marginalizing scale, in addition to translation. If s> 0 and E is an exponential

or other unilateral density function, the process can be written as

hDSP(θ |I)[x] =
∫

hSIFT(θ |I,σ)[x]Es(σ)dσ x ∈ Λ (2)

as illustrated in Fig. 1 and implemented in few lines of code. DSP-SIFT has

the same dimension of SIFT and improves its performance by 10% to 40%

mean-average precision (mAP) on the datasets we tested. It also outperforms

a deep convolutional architecture (CNN) in wide-baseline matching tasks,

despite having a considerably smaller size and requiring no training (Fig. 2).

DSP-SIFT pools gradient orientations in regions of different size, hence

the name domain-size pooling, in apparent violation of the principles of scale-

space theory and scale selection. There, the size of the region where statistics

are computed is tied to the spatial frequencies of the image, which facilitates

correspondence under changes of scale or distance. However, this does not

take into account occlusions: How large a portion of a scene is visible in

each corresponding image(s) depends on the shape of the scene, the pose of

the two cameras, and the resulting visibility (occlusion) relations, not on the

spatial frequencies of the image. Therefore, we untie the size of the domain

where the descriptor is computed (“scale”) from photometric characteristics

This is an extended abstract. The full paper is available at the Computer Vision Foundation

webpage.
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Figure 2: Each point represents a pair of images from two benchmarks. Left:

DSP-SIFT consistently improves the original SIFT (relative improvement

shown in title). Right: DSP-SIFT also outperforms the CNN descriptors

without increase in dimension (shown in axis).

of the image (Fig. 3). While somewhat unintuitive, as histogram bins mix

different regions of the same image, this procedure is rooted in classical

sampling theory and the practice of anti-aliasing.

Domain-size pooling can be applied to a range of other low-level vision

operations, such as in other histogram-based representations, including the

lower layers of convolutional neural networks [2]. A more detailed derivation

of DSP-SIFT and its relation to sampling theory is described in [1], and the

implementation is available at vision.ucla.edu/dsp-sift.
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Figure 3: Scale-space refers to a continuum of images obtained by smooth-

ing and downsampling a base image. It is relevant to searching for corre-

spondence when the distance to the scene changes. Size-space refers to

a scale-space obtained by maintaining the same scale of the base image,

but considering subsets of it of variable size. It is relevant to searching for

correspondence in the presence of occlusions, where the size (and shape) of

co-visible domains are not known.
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