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Most tracking algorithms experience a drift problem due to various reasons,
including non-discriminative feature descriptors, occlusions, and sudden il-
lumination changes. For more robust tracking, recent tracking algorithms
attempt to overcome such interferences. Since a certain feature type may
fail to distinguish a target object from its background, multiple trackers us-
ing different features can be combined adaptively [3, 6]. However, if the
multiple-tracker algorithm loses the position of a target object in a frame be-
cause of any interruption, the tracking error may propagate to future frames.
Recently, tracking systems with memory [4, 5, 8], which can refine past tra-
jectories or appearance models of a tracker, have been proposed to suppress
the error propagation. In [4, 5], most probable positions of a target object are
memorized in each frame, and then the trajectory of the target object is es-
timated by dynamic programming. Also, in [8], several appearance models
from past frames are recorded and processed to yield a proper appearance
model and reduce tracking errors. However, these trackers with memory
employ fixed feature descriptors, which cannot effectively separate a target
object from its background in some sequences.

In this paper, we propose a novel multihypothesis tracking algorithm,
referred to as the multihypothesis trajectory analysis (MTA) tracker, which
combines the concept of the ‘tracking using multiple trackers’ with that of
the ‘tracking with memory.’ We employ three forward trackers using dif-
ferent features, which are based on texture information, color information,
and illumination invariant information, respectively. From frame t − τ to
frame t, each forward tracker traces a target object independently of the
other trackers. Then, at frame t, each backward tracker is initialized at the
estimated position of the corresponding forward tracker, and then computes
a backward trajectory in a time-reversed manner. To select the best track-
ing result among the three forward trackers, we calculate their robustness
scores. To this end, we extract the geometric similarity, the cyclic weight,
and the appearance similarity from each pair of the forward and backward
trajectories. After selecting the best forward trajectory, the appearance mod-
els of all forward trackers revert to the previous conditions at frame t − τ ,
and are updated using the bounding boxes along the selected forward tra-
jectory. When all forward trajectories have low geometric and appearance
similarities in consecutive frames, the forward trackers are not updated and
the search range is increased for next frames. The main contributions of this
work are as follows.

• Novel multihypothesis trajectory analysis to extract the best trajec-
tory from a set of multiple trackers.

• Design of the robustness score of a pair of forward and backward
trajectories, based on the geometric similarity, the cyclic weight, and
the appearance similarity.

• Pattern analysis of geometric similarities and appearance similarities
along trajectories to detect and handle tracking failures.

Figure 1 illustrates two trajectory hypotheses from frame t − τ to frame
t. In this example, we track the target athlete within the gray bounding box
at frame t − τ . Red and purple curves depict the forward trajectories, ob-
tained by two different forward trackers, and blue and green curves are the
backward trajectories of the corresponding backward trackers, respectively.
Note that the red tracker fails to trace the target, and the associated appear-
ance model is continuously updated with inaccurate samples. At time t,
the blue tracker is initialized at the blue bounding box. It then follows the
non-target object backwardly in the reverse order of time, and the backward
tracking result at time t − τ is thoroughly different from the target. In con-
trast, the green tracker provides the result at time t − τ , which matches the
original target object successfully. Therefore, we select the purple forward
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Figure 1: The forward-backward trajectory analysis: the purple forward
tracker is successful, while the red one is not.

Table 1: Comparison of the average success rates (SR) and the average pre-
cision rates (PR) on the benchmark sequences in [7].

STRUCK KCF MEEM MTA
SR 0.475 0.514 0.579 0.595
PR 0.647 0.740 0.836 0.838

tracker as a valid one and discard the result of the red tracker to achieve
robust object tracking.

We test the proposed MTA algorithm on the recent benchmark dataset [7],
which consists of 50 test sequences in challenging conditions, e.g. illumina-
tion variation, occlusion, and out-of-view. In this work, all forward and
backward trackers are based on STRUCK. We compare the proposed MTA
algorithm with the state-of-the-art trackers: STRUCK [1], KCF [2], and
MEEM [8]. We see that MTA provides better performance than all the con-
ventional algorithms. Especially, MTA yields 25.3% better SR and 29.5%
better PR than STRUCK does.
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