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Abstract

The notion of multihypothesis trajectory analysis (MTA)
for robust visual tracking is proposed in this work. We em-
ploy multiple component trackers using texture, color, and
illumination invariant features, respectively. Each compo-
nent tracker traces a target object forwardly and then back-
wardly over a time interval. By analyzing the pair of the
forward and backward trajectories, we measure the robust-
ness of the component tracker. To this end, we extract the
geometry similarity, the cyclic weight, and the appearance
similarity from the forward and backward trajectories. We
select the optimal component tracker to yield the maximum
robustness score, and use its forward trajectory as the fi-
nal tracking result. Experimental results show that the pro-
posed MTA tracker improves the robustness and the accu-
racy of tracking, outperforming the state-of-the-art trackers
on a recent benchmark dataset.

1. Introduction

For decades, numerous visual tracking algorithms have
been proposed [30, 29, 20]. Most tracking algorithms ex-
perience a drift problem due to various reasons, including
non-discriminative feature descriptors, occlusions, and sud-
den illumination changes. For more robust tracking, recent
tracking algorithms attempt to overcome such interferences.

Since a certain feature type may fail to distinguish a tar-
get object from its background depending on input video
sequences, multiple trackers using different features can be
combined adaptively to achieve robust tracking [19, 24, 16,
17]. More specifically, the tracked positions of multiple
trackers are compared and processed to yield an overall es-
timated position. Then, all the trackers are updated using
the information at the estimated position. However, if the
multiple-tracker algorithm loses the position of a target ob-
ject in a frame because of any interruption, the tracking er-
ror may propagate to future frames.

Recently, tracking systems with memory [23, 21, 31],
which can refine past trajectories or appearance models of a
tracker, have been proposed to suppress the error propaga-
tion. In the long-term trackers in [23, 21], most probable po-
sitions of a target object are memorized in each frame, and
then the trajectory of the target object is estimated by dy-
namic programming, which considers both the confidence
of each position and the temporal relation between posi-
tions in consecutive frames. Also, in [31], several appear-
ance models from past frames are recorded and processed
to yield a proper appearance model and reduce tracking er-
rors. However, these trackers with memory employ fixed
feature descriptors, which cannot effectively separate a tar-
get object from its background in some sequences. There-
fore, they still yield inaccurate tracking results depending
on the feature selection.

In this paper, we propose a novel multihypothesis track-
ing algorithm, which combines the concept of the ‘track-
ing using multiple trackers’ with that of the ‘tracking with
memory.’ We employ three forward trackers using differ-
ent features, which are based on texture information, color
information, and illumination invariant information, respec-
tively. From frame t − τ to frame t, each forward tracker
traces a target object independently of the other trackers.
Then, at frame t, each backward tracker is initialized at
the estimated position of the corresponding forward tracker,
and then computes a backward trajectory in a time-reversed
manner. To select the best tracking result among the three
forward trackers, we calculate their robustness scores. To
this end, we extract the geometric similarity, the cyclic
weight, and the appearance similarity from each pair of
the forward and backward trajectories. After selecting the
best forward trajectory, the appearance models of all for-
ward trackers revert to the previous conditions at frame
t − τ , and are updated using the bounding boxes along the
selected forward trajectory. When all forward trajectories
have low geometric and appearance similarities in consec-
utive frames, the forward trackers are not updated and the
search range is increased for next frames. The main contri-
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butions of this work are as follows.

• Novel multihypothesis trajectory analysis to extract the
best trajectory from a set of multiple trackers.

• Design of the robustness score of a pair of forward and
backward trajectories, based on the geometric similar-
ity, the cyclic weight, and the appearance similarity.

• Pattern analysis of geometric similarities and appear-
ance similarities along trajectories to detect and handle
tracking failures.

The rest of the paper is organized as follows: Sec-
tion 2 briefly reviews related work. Section 3 explains the
STRUCK tracker [10], on which the proposed algorithm is
based. Section 4 describes the proposed algorithm, and Sec-
tion 5 discusses experimental results. Section 6 draws con-
clusions.

2. Related Work
Tracking-by-Detection: To track a target object by detect-
ing it over time, a support vector machine (SVM) classi-
fier, trained on about 10, 000 images of vehicles and non-
vehicles offline, is employed in [1]. Since a target object
changes its appearance over time in general, a classifier is
updated online using positive and negative samples around
tracked target positions in [2]. The STRUCK tracker [10]
adopts a structured SVM classifier to integrate learning and
tracking harmoniously and avoid ambiguities in sample la-
belling. Also, to prevent a drift problem due to classifier
updates, occlusions are detected by analyzing long-term tra-
jectories of points within a bounding box in [12].
Backward Tracking: In [27], a time-reversibility con-
straint, based on the geometric similarity, is used to improve
the Kanade-Lucas-Tomasi (KLT) feature tracker. The geo-
metric similarity measures the distance between a feature
point and its estimated position after the forward and then
the backward tracking. In an ideal case, the distance should
be zero. The TLD tracker [15] employs several KLT fea-
ture trackers, which start from points on a rectangular grid
within a bounding box and estimate their motion vectors
between consecutive frames. Half of the motion vectors are
discarded based on the geometric similarity. Then, the me-
dian of the remaining motion vectors becomes the estimated
displacement vector of the bounding box. The geometric
similarity is also used to detect tracking failures in [25].

The proposed algorithm also performs backward track-
ing to improve the robustness of forward tracking. How-
ever, whereas the conventional algorithms [27, 15, 25] de-
tect tracking failures between two consecutive frames based
on the geometric similarity only, the proposed algorithm
quantifies the reliability of a forward trajectory by employ-
ing the geometric similarity, the circularity, and the appear-

ance similarity between a pair of the forward and backward
trajectories over a time interval τ .
Multiple Trackers: The co-tracking algorithm [24] trains
multiple SVM classifiers using different feature types and
combine their tracking results to achieve robust tracking.
In [16], multiple trackers are designed using multiple obser-
vation and motion models, and then integrated into a single
overall tracker in an interactive Markov Chain Monte Carlo
framework. Also, in [17], multiple trackers are adaptively
sampled from a tracker space and combined. The unifying
algorithm [9] exploits the relation among individual track-
ers by measuring the consistency of each tracker between
two successive frames and the pair-wise correlation among
different trackers.
Tracking with Memory: In [23, 21], candidate positions of
a target object are recorded for a number of recent frames.
Those positions become nodes, which are connected by
edges between consecutive frames. Then, an optimal tra-
jectory is extracted by dynamic programming. The MEEM
algorithm [31] employs multiple base trackers and memo-
rizes their former states, so that it can restore the tracking
process when a tracker has been updated with false posi-
tives. Also, the fusion algorithm [4] provides a refined tra-
jectory of an object, by combining the trajectories of the
conventional algorithms in a recent benchmark [28], based
on dynamic programming.

3. STRUCK Tracker
This section briefly reviews the STRUCK tracker [10].

Let x denote the position of the bounding box of a target
object, and d denote the displacement vector of the bound-
ing box from previous to current frames. STRUCK uses a
discriminant function of the form f(x,d) = wtΦ(x,d),
where Φ(x,d) is a joint feature map of x and d, and w is
the normal vector to a hyperplane. The discriminant func-
tion is simplified to

f(x,d) =
∑
i,j

βi,jk
(
Φ(x(i),d(j)),Φ(x,d)

)
(1)

where (x(i),d(j)) is a support vector, and k(·) is a joint
kernel function to transform a linear classifier into a non-
linear one. Also, βi,j > 0 for a positive support vector and
βi,j < 0 for a negative one.

STRUCK estimates the position xt of the bounding box
at frame t as xt = xt−1 + d̂t. The estimated displacement
vector d̂t is given by

d̂t = arg max
dt

f(xt−1,dt), (2)

which maximizes the discriminant function. After estimat-
ing xt, systematically labelled training samples are gener-
ated from frame t and used to update the discriminant func-
tion, based on the online SVM techniques [5, 6].



T
im

e

Forwad Tracker 1

Backward Tracker 1

Backward Tracker 2

Forward Tracker 2

Figure 1. The forward-backward trajectory analysis: the purple
forward tracker is successful, while the red one is not.

4. Proposed MTA Tracker

Tracking may fail, when a target object changes its ap-
pearance or is occluded by other objects. For example, sup-
pose that a target object is gradually occluded by a non-
target object. Then, the appearance model is also slowly
corrupted with the features of the non-target object, and the
tracker fails eventually. However, it is difficult to discrimi-
nate such gradual corruption of the appearance model from
genuine changes in object appearance. To overcome this
difficulty, we employ a backward tracker, which detects a
specified object in the reverse order of time. We initialize
the backward tracker at the detected position of the forward
tracker, and obtain the backward trajectory. By compar-
ing the backward trajectory with the forward one, we can
tell approximately whether the forward tracker succeeded
or not. Moreover, we employ multiple forward trackers
that provide multiple trajectory hypotheses. Based on the
forward-backward analysis, we select the best forward tra-
jectory to improve the accuracy and the robustness of track-
ing. Thus, we refer to the proposed algorithm as the multi-
hypothesis trajectory analysis (MTA) tracker.

Figure 1 illustrates two trajectory hypotheses from frame
t− τ to frame t. In this example, we track the target athlete
within the gray bounding box at frame t− τ . Red and pur-
ple curves depict the forward trajectories, obtained by two
different forward trackers, and blue and green curves are the
backward trajectories of the corresponding backward track-
ers, respectively. Note that the red tracker fails to trace the
target, and the associated appearance model is continuously
updated with inaccurate samples. At time t, the blue tracker
is initialized at the blue bounding box. It then follows the
non-target object backwardly in the reverse order of time,

and the backward tracking result at time t− τ is thoroughly
different from the target. In contrast, the green tracker pro-
vides the result at time t − τ , which matches the original
target object successfully. Therefore, we select the purple
forward tracker as a valid one and discard the result of the
red tracker to achieve robust object tracking.

4.1. Multiple Component Trackers

We employ three component trackers Γ1, Γ2, and Γ3,
which are based on STRUCK. These trackers use different
feature descriptors, and are employed to determine object
trajectories independently. The component trackers exploit
the following features:

Γ1: The first tracker uses a Haar-like feature to represent
texture information of a target object. The Haar-like
feature consists of six different types at two scales over
4× 4 blocks in a bounding box [10]. Thus, the feature
vector has the dimension of 192. Each element in the
vector is normalized to the range [−1, 1].

Γ2: The second tracker uses color histograms to consider
the local color distribution of the target object. A
bounding box is also divided into 4 × 4 blocks, and
the CIE Lab color histogram with 48 bins is extracted
from each block. Hence the feature vector has the di-
mension of 768.

Γ3: The third tracker employs an illumination invariant
feature similarly to [31, 8]. First, we obtain a gradi-
ent magnitude image from the L channel image. Then,
we obtain a cumulative histogram of the magnitudes.
By employing the cumulative histogram, we transform
the magnitude image into a rank image, where each
magnitude is replaced by the corresponding value of
the cumulative histogram. The single rank image and
the three-channel CIE Lab image are integrated into
a four-channel image. Finally, the 1024-dimensional
feature vector is obtained by spatially down-sampling
the four-channel bounding box into a 16× 16 block.

To measure the similarity of feature vectors u and v, we
combine them using the intersection kernel, given by

k(u,v) =
1

D

D∑
i=1

min(ui, vi) (3)

where D is the feature dimension.

4.2. Trajectory Analysis – Robustness Score

The component trackers Γ1, Γ2, and Γ3 yield three tra-
jectory hypotheses. We measure the robustness of each
tracker, and choose the trajectory hypothesis of the most
robust tracker as the final trajectory.
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Figure 2. Trajectory analysis: (a) the geometric similarities be-
tween a pair of forward and backward trajectories and (b) the
cyclic property of a pair of forward and backward trajectories.

Let us describe how to compute the robustness score of
a tracker. First, the tracker traces a target object forwardly
from previous to current frames. Let −→x t denote the bound-
ing box position at frame t, which is estimated by the tracker
in this forward manner. The forward trajectory from frame
t1 to frame t2 is denoted by

−→
Xt1:t2 =

{−→x t1 ,
−→x t1+1, . . . ,

−→x t2

}
(4)

where t1 < t2. Then, at the position −→x t2 in frame t2, we
initialize the same tracker to trace the target backwardly in
the reverse order of time. Let ←−x t be the backwardly esti-
mated position at frame t. The backward trajectory from
frame t2 to frame t1 is denoted by

←−
Xt2:t1 =

{←−x t2 ,
←−x t2−1, . . . ,

←−x t1

}
. (5)

Note that, at the last frame t2 in the interval [t1, t2], we have

−→x t2 =←−x t2 .
We check the reliability of the forward trajectory using

the backward trajectory, by employing three kinds of mea-
surements: geometric similarity, cyclic weight, and appear-
ance similarity. As shown in Figure 2(a), the geometric sim-
ilarity ςt at frame t is defined as

ςt = exp

(
−||
−→x t −←−x t||2

σ2
1

)
(6)

using the distance between the forward position −→x t and the
backward position←−x t, where σ2

1 = 500. Ideally, the back-
ward trajectory should be identical with the forward one. In
such a case, the geometric similarity ςt becomes 1.

Next, we evaluate the cyclic weight of the forward and
backward trajectories

−→
Xt1:t2 and

←−
Xt2:t1 . Although −→x t2 =

←−x t2 , the end position of the backward trajectory may be in-
consistent with the start position of the forward trajectory,
i.e. ←−x t1 6=

−→x t1 , due to a tracking failure. In such a case,
the concatenation of the two trajectories does not form a
cycle. In Figure 2(b), trackers 1 and 2 form cycles, while
tracker 3 does not. Tracker 1 yields identical forward and
backward trajectories, forming a cycle, which indicates a
high likelihood of successful tracking. In this case, the ge-
ometric similarity ςt is 1 during the whole interval [t1, t2].
Tracker 2 also forms a cycle, but the backward trajectory
deviates from the forward one in the middle of the interval,
in which ςt decreases. However, this may be due to a tem-
porary occlusion and, overall, tracker 2 may be successful.
In contrast, the non-cyclic trajectory of tracker 3 informs of
a likely tracking failure.

In practice, we first compute the overlap ratio of two cor-
responding bounding boxes, given by

ζt =
∆(−→x t,

←−x t)

∆(−→x t) + ∆(←−x t)
(7)

where ∆(−→x t) and ∆(←−x t) are the areas of the bounding
boxes at −→x t and←−x t, respectively, and ∆(−→x t,

←−x t) denotes
the overlapped area of the two boxes. When ζt ≤ 0.3,
it is declared that −→x t and ←−x t do not match. We count
the number Ω of mismatched frames within a short inter-
val [t1, t1 + ε] to check whether

−→
Xt1:t2 and

←−
Xt2:t1 form a

cycle. Then, we define the cyclic weight χ of
−→
Xt1:t2 and

←−
Xt2:t1 as

χ =

{
106 if Ω is 0 or 1,
1 otherwise. (8)

Note that 106 is an arbitrary big number, so as to set the
cyclic weight χ quite differently between the two cases and
thus discriminate cyclic trajectories from non-cyclic ones.
Also, to compute χ, we consider only the first ε frames
in the forward trajectory to allow temporary mismatches of



−→x t and←−x t for a short duration within [t1, t2]. In this work,
ε = 4 when t2 − t1 = 30.

Also, we define the appearance similarity to measure
the reliability of the backwardly estimated position ←−x t in
←−
Xt1:t2 . Suppose that the trajectory

−→
X1:t1 from the first

frame of an input sequence to frame t1 is already finalized
using the multiple trackers. We maintain a set of four image
patches, S1:t1 , which are selected from the bounding boxes
along

−→
X1:t1 . The bounding box in the first frame is se-

lected by default, and three other boxes are updated to yield
the highest discriminant function values up to frame t1. Let
P (x) denote the image patch centered at x. Then, the ap-
pearance similarity of P (←−x t) to the set S1:t1 is defined as

φt = exp

−∑Q∈S1:t1

∥∥K • (P (←−x t)−Q))
∥∥2

4whσ2
2

 , (9)

where σ2
2 = 900, and w and h are the width and height of a

bounding box, respectively. K is a Gaussian weight mask,
and “•” denotes the pixel-by-pixel weight multiplication. A
small φt indicates that the bounding box at←−x t changes its
appearance quickly from the previous ones, possibly indi-
cating a tracking error.

Finally, we combine the geometric similarities, the cyclic
weight, and the appearance similarities to quantify the ro-
bustness of the tracker during [t1, t2], given by

Ψt1:t2 = χ

t2∑
t=t1

ςtφt. (10)

A large robustness score Ψt1:t2 informs that the forward tra-
jectory

−→
Xt1:t2 of the tracker is reliable.

4.3. Tracking by Optimal Trajectory Selection

We perform the tracking by analyzing a pair of forward
and backward trajectories, obtained by each component
tracker. However, to alleviate the computational burden, we
perform the trajectory analysis on each set of τ consecu-
tive frames, but we share the boundary frame between two
consecutive sets. More specifically, if the trajectory analy-
sis is performed on the interval [t− τ, t], it is performed on
the next interval [t, t+ τ ] by sharing frame t. Therefore, the
trajectory analysis routine is called at every τ -th frame only.

For the interval [t − τ, t], we first obtain the three for-
ward trajectories and then the corresponding backward tra-
jectories, by employing the component trackers Γ1, Γ2, and
Γ3, respectively. Then, we compute the robustness scores
in (10) for the three trackers, and select the optimal tracker
to yield the highest score. Let

−→
X∗t−τ :t =

{−→x ∗t−τ ,−→x ∗t−τ+1, . . . ,
−→x ∗t
}

(11)

denote the forward trajectory of the optimal tracker. This is
used as the tracking result. Then, we revert all component
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Figure 3. The average success rates (SR) and precision rates (PR)
on the benchmark dataset [28], according to the interval length τ .

trackers to the previous conditions at frame t − τ , and up-
date their classifiers using the samples along the finalized
trajectory

−→
X∗t−τ :t. However, to prevent the use of corrupted

samples, we skip the update at frame t if the corresponding
product ς∗t φ

∗
t of the geometric similarity and the appearance

similarity is less than a pre-specified threshold δ1 = 0.2.
Then, all three component trackers start at −→x ∗t for the next
interval [t, t+ τ ].

When a non-target object is located near a target object,
we cannot select the optimal tracker effectively with a short
interval length τ . The interval length should be long enough
for the non-target object to be sufficiently separated from
the target object. On the other hand, with a longer inter-
val length, the impacts of a single tracking failure becomes
more severe. Therefore, it is important to select an appro-
priate τ . Figure 3 plots the average success rates (SR) and
the average precision rates (PR) in terms of τ [28]. SR is
the area under the curve of a success plot, and PR is the per-
centage of the frames in which the estimated positions of
a target object are within 20 pixels from the ground truth.
Notice that both SR and PR are maximized when τ = 30.
We hence set τ = 30.

4.4. Failure Handling

When the cyclic weight in (8) for the optimal tracker is
1, we declare that a tracking failure occurs in the current
interval. We also detect a tracking failure, when all com-
ponent trackers have ςtφt ≤ δ2 in consecutive frames for a
longer duration than 2τ/3. In this work, δ2 = 0.004. When
a tracking failure is detected, we do not update the classi-
fiers of all component trackers. Moreover, when a tracking
failure occurs, the target object may be located outside the
ordinary search range. Thus, we increase the size of the
search range from R to 4 × R, but check every one out of
64 sample positions within the increased search range to re-
duce the computational complexity.



Table 1. Comparison of the average success rates (SR) and the average precision rates (PR) on the benchmark sequences in [28]. Eight
conventional algorithms are tested: STRUCK [10], SCM [32], TLD [14], ASLA [13], CXT [7], VTD [16], KCF [11], and MEEM [31].
The last four columns correspond to the proposed algorithm: MTA uses all component trackers Γ1, Γ2, and Γ3, while MTAi uses a single
Γi only (i = 1, 2, 3). The best result is highlighted in bold face, and the second best result is underlined.

STRUCK SCM TLD ASLA CXT VTD KCF MEEM MTA1 MTA2 MTA3 MTA
SR 0.475 0.499 0.437 0.434 0.426 0.416 0.514 0.579 0.508 0.538 0.524 0.595
PR 0.647 0.649 0.608 0.532 0.575 0.576 0.740 0.836 0.694 0.742 0.704 0.838

(a) (b)

Figure 4. The performances of the proposed algorithm using different combinations of component trackers: (a) success plots and (b)
precision plots on the benchmark dataset [28]. MTA uses all three combinations, MTAi means that only Γi is used, and MTAi,j means
that Γi and Γj are used.

Table 2. Comparison of the proposed algorithm with the conven-
tional state-of-the-art algorithms on non-benchmark sequences.
For each test, the two numbers are the PR(SR) results. The best
results are highlighted in bold face.

STRUCK KCF MEEM MTA

Badminton [18] 0.65(0.46) 0.22(0.15) 0.52(0.37) 0.89(0.63)
Bird2 [26] 0.10(0.10) 0.56(0.64) 0.99(0.75) 1.00(0.77)
Board [22] 0.68(0.69) 0.70(0.73) 0.60(0.72) 0.79(0.80)

GirlMov [26] 0.19(0.18) 0.08(0.08) 0.87(0.63) 0.92(0.67)
SnowBoard [18] 0.18(0.17) 0.08(0.10) 0.19(0.14) 0.41(0.28)

Surfer [3] 0.97(0.58) 1.00(0.68) 0.98(0.62) 0.95(0.50)
Youngki [18] 0.06(0.15) 0.07(0.21) 0.59(0.55) 0.67(0.60)

Average 0.40(0.33) 0.39(0.37) 0.68(0.54) 0.80(0.61)

5. Experimental Results

We test the proposed algorithm on the recent bench-
mark dataset [28], which consists of 50 test sequences in
challenging conditions, e.g. illumination variation, occlu-
sion, and out-of-view. We compare the proposed algorithm
with eight conventional trackers: STRUCK [10], SCM [32],
TLD [14], ASLA [13], CXT [7], VTD [16], KCF [11], and
MEEM [31]. The first six trackers are in the benchmark,
while the last two trackers are added because of their excel-

lent tracking results.

Table 1 compares the average SR and PR of the proposed
algorithm with those of the conventional algorithms. The
proposed algorithm includes the tracking failure handler in
Section 4.4 to suppress error propagation and achieve ro-
bust tracking. Thus, we perform the one-pass evaluation
(OPE) [28] to demonstrate the advantages of the proposed
algorithm. In Table 1, the proposed algorithm is tested
in four ways: MTA uses all component trackers Γ1, Γ2,
and Γ3, while MTAi uses a single Γi only (i = 1, 2, 3).
Note that the component trackers are based on STRUCK.
However, even though a single component tracker is used,
the proposed algorithm outperforms STRUCK due to the
tracking failure handler. Moreover, when Γ1, Γ2, and Γ3

are combined based on the multihypothesis trajectory anal-
ysis, MTA provides better performance than all the con-
ventional algorithms. Especially, MTA yields 25.3% bet-
ter SR and 29.5% better PR than STRUCK does. Table 2
shows that the proposed MTA outperforms the state-of-the-
art STRUCK, KCF, and MEEM trackers on non-benchmark
test sequences as well.

Figure 4 shows the success plots and the precision plots
of the proposed algorithm using different combinations of
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Figure 6. Examples of forward and backward trajectories on the “Basketball” sequence.

component trackers. We test every possible combination.
By employing Γ2, MTA2 uses color features to provide
more accurate tracking results than the other trackers MTA1

and MTA3, which use Haar-like and illumination invari-
ant features, respectively. However, when two component
trackers Γ1 and Γ3 are used, MTA1,3 yields better results
than MTA2. Furthermore, by combining all three Γ1, Γ2,
and Γ3, MTA provides the best results. In general, the
proposed multihypothesis trajectory analysis provides bet-
ter results, as it employs more component trackers.

Figure 5 shows the selection ratios of the component
trackers Γ1, Γ2, and Γ3 for each sequence. In some se-
quences, all forward trajectories of a certain tracker are not
selected. For example, Γ1 is not chosen in the “Bolt” se-
quence, since the Haar-like feature descriptor fails to dis-

tinguish the target athlete from the nearby numbered cone,
as shown in Figure 1. On average, the selection ratios of
Γ1, Γ2, and Γ3 are 41%, 28%, and 31%, respectively. Since
each component tracker has its own advantages in different
scene scenarios, the selection ratios of the three trackers are
similar to one another.

Figure 6 illustrates the tracking process of the proposed
MTA tracker on the “Basketball” sequence. Solid and dot-
ted lines depict forward and backward trajectories, respec-
tively. Also, blue, green, and orange colors represent the
component trackers Γ1, Γ2, and Γ3, respectively. In this ex-
ample, the forward trajectories of Γ2, Γ3, Γ1, and Γ2 are
selected as the final ones in Figure 6(a), (b), (c), and (d),
respectively. In Figure 6(a), since the target player in the
green uniform is partially occluded by another player in the



(c) Singer2

(b) Jogging

MTAMEEMSTRUCK KCF

(d) Skiing

(a) Basketball

Figure 7. Tracking examples of the proposed MTA tracker and the conventional STRUCK, KCF, and MEEM trackers.

white uniform at frame 21, the backward trajectory of Γ1

follows the white player after the occlusion. The backward
trajectory of Γ3 also becomes unstable during the occlusion.
Therefore, based on the multihypothesis analysis, the for-
ward trajectory of Γ2 is selected finally.

Figure 7 compares tracking results of the proposed MTA
tracker with those of STRUCK, KCF, and MEEM quali-
tatively. The “Basketball” and “Jogging” sequences have
cluttered backgrounds and occlusions. Therefore, the con-
ventional trackers fail to track the target objects correctly.
In contrast, the proposed MTA tracker selects reliable tra-
jectories by exploiting the geometric similarities, the cyclic
weights, and the appearance similarities, and tracks the ob-
jects successfully. Also, in the “Singer2” and “Skiing” se-
quences, some features cannot distinguish the targets from
the backgrounds. Hence, the conventional trackers suffer
from failures depending on the feature selection. However,
MTA robustly tracks the targets using multiple trackers with
different features.

6. Conclusions
In this paper, we proposed the multihypothesis trajec-

tory analysis for robust visual tracking. The proposed MTA
tracker uses three component trackers. Over a time inter-
val, each component tracker computes the forward trajec-
tory and then the backward trajectory. By analyzing the
forward and backward trajectories, MTA extracts the ge-
ometry similarities, the cyclic weight, and the appearance
similarities, which are then combined into the robustness
score of the tracker. MTA then selects the optimal tracker to
yield the highest robustness score, and then uses its forward
trajectory as the final tracking result. Experimental results
demonstrated that MTA achieves more accurate and robust
tracking than the conventional state-of-the-art trackers.

Future research issues include the application of the mul-
tihypothesis trajectory analysis to other component trackers.
For example, several state-of-the-art trackers can be used as
component trackers, while the current implementation uses
three component trackers that are all based on STRUCK.
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