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Recently, an increasing number of works have proposed to learn visual
saliency by leveraging human fixations. However, the collection of human
fixations is time consuming and the existing eye tracking datasets are gen-
erally small when compared with other domains. Thus, it contains a certain
degree of dataset bias due to the large image variations (e.g., outdoor scenes
vs. emotion-evoking images). In the learning based saliency prediction lit-
erature, most models are trained and evaluated within the same dataset and
cross dataset validation is not yet a common practice. Instead of directly
applying model learned from another dataset in cross dataset fashion, it is
better to transfer the prior knowledge obtained from one dataset to improve
the training and prediction on another. In addition, since new datasets are
built and shared in the community from time to time, it would be good not
to retrain the entire model when new data are added.

To address these problems, we proposed a new learning based saliency
model, namely Label Consistent Quadratic Surrogate algorithm, which em-
ploys an iterative online algorithm to learn a sparse dictionary with label
consistent constraint. The advantages of the proposed model are three-folds:
(1) the quadratic surrogate function guarantees convergence at each itera-
tion, (2) the label consistent constraint enforces the predicted sparse code
to be discriminative, and (3) the online properties enable the proposed algo-
rithm to adapt existing model with new data without retraining.

As shown in Fig. 1, given the training samples, a discriminative sparse
error term, |U— LX| % and a classification error term, ||vT —wTX| % simi-
lar to [2, 3], are taken into account to approximate the discriminative sparse
codes X = [x1,X2,...,%,] € R¥" and to learn a sparse dictionary D. The
objective function in the dictionary learning problem for visual saliency pre-
diction can be formulated as:

<D,L,X,w>=arg_min ||Z—DX|*+a|U—-LX|?%
DA X.w (1)
+ BT —w X5+ A X1,

where the coefficients o and 8 control the relative contribution of the dis-
criminative sparse error term and classification error term, respectively. v is
saliency labels from the human fixation ground truth and w is the classifi-
cation weights to reconstruct the ground truth saliency labels. The matrix
U € {0, 1}¥*" is the discriminative sparse codes of features Z and L € RF*K
is a linear transformation matrix to enforce original sparse codes in X to be
more discriminative. Eq. (1) can be rewritten as:

<D,X>= arg min||Z — DXz + A (X1 1 ©)
DX
where Z and D are denoted as:
z = (z" Vau' /v 3)
D = (7, VaLl,V/Bw) “)

and A is a regularization parameter.

Given a set of training samples Z = [Z,...,%,] where Z; € p(Z), one
sample Z; is drawn from Z, at iteration 7, to compute the decomposition
of Z, x;, with the dictionary learned in the previous iteration, D,_l, using
LARS algorithm [1]

Ll - 5
x; = argmin = [|Z,_; — Dy yx[|5 + Al x[; (5)
xERK2

The computed x; will be used to update the knowledge matrices Q and
H via

Q Q1 +xx,

o ©)
H; < H;_1 +Zx,
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Figure 1: An overview of the LCQS saliency model.

where Qg and Hy are both zero matrices if there is no prior information.
At the meantime, the objective function in Eq. (2) can be rewritten in an
iterative fashion

~ D AN D

D, = agin 13 (3 Dxl3 + 2l )

Dec ! i=1 2
N
= argmin 1 (lTr(f)Tf)Q,) - Tr(f)THt)) .
Dec 1 \2
In the dictionary update process, the block-coordinate descent method is

applied with D;_| as warm restarts. The update procedure does not require
any parameter to control the learning rate. In addition, it does not store
the training samples and sparse codes from the previous iterations, but only
the thesaurus matrices Q; = [qy,...,qx,] and H; = [hy,,... h,]. In each
iteration, each basis in D is sequentially updated, i.e., updating the j-th basis
d; at a time while freezing the other ones under the constraint djrd ;<1
Specifically, d; is updated to optimize for Eq. (7)

¥i < o (hj—Dg;)+d;

L
Qjj
1 ®)

S
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d i
In the dictionary update process, each basis in D undergoes the update until
a convergence criteria is satisfied [4].
The proposed model is evaluated on 3 benchmark eye tracking datasets
and it shows promising performances.
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