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Abstract

We present a new approach to wide baseline matching.
We propose to use a hierarchical decomposition of the im-
age domain and coarse-to-fine selection of regions to match.
In contrast to interest point matching methods, which sam-
ple salient regions to reduce the cost of comparing all re-
gions in two images, our method eliminates regions sys-
tematically to achieve efficiency. One advantage of our ap-
proach is that it is not restricted to covariant salient regions,
which is too restrictive under large viewpoint and leads to
few corresponding regions. Affine invariant matching of re-
gions in the hierarchy is achieved efficiently by a coarse-to-
fine search of the affine space. Experiments on two bench-
mark datasets shows that our method finds more correct
correspondence of the image (with fewer false alarms) than
other wide baseline methods on large viewpoint change.

1. Introduction

Determining correspondence in images of a scene un-
der wide baseline is a fundamental problem in computer vi-
sion. Applications include 3D reconstruction, motion esti-
mation, and recognition. Although much research has been
performed, nuisances in image formation such as viewpoint
pose difficulties to existing methods [21].

The simplest method to establish correspondence under
wide baseline uses many neighborhoods around each pixel
in both images. Image data in all neighborhoods in image
1 are matched against image data in all neighborhoods of
image 2. Best matches form pixel correspondences. One
considers a neighborhood around each pixel since pixel val-
ues are not discriminative enough to establish unique cor-
respondence. Multiple neighborhoods around the pixel are
chosen since it is unknown a-priori what neighborhood size
to choose. Small neighborhoods are not discriminative, es-
tablishing multiple matches, while large neighborhoods are
subject to occlusions and may not find correspondence. Due
to scale changes, one must match multiple neighborhoods
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of one pixel in image 1 to multiple neighborhoods at every
pixel in image 2. While in principle this naive method is
foolproof, it is obviously computationally intractable.

Interest point matching methods (see [29] for a sur-
vey) address the computational cost of this naive ap-
proach. These methods sample interesting neighborhoods
from both images, reducing the number of comparisons
between neighborhoods. Neighborhoods that are salient
and not unlikely to match are chosen using detectors (e.g.,
[14, 17, 18, 2]). Corners and blobs are typical choices.
Constant neighborhoods, unlikely to find unique correspon-
dence, are eliminated. Neighborhood comparison must be
invariant to possible transformations. This is accomplished
efficiently by comparing low-dimensional descriptor vec-
tors of neighborhoods (e.g., [3, 14, 19, 2, 28, 6]) that are
invariant to basic transformations.

Interest point methods have had tremendous success.
However, existing methods are unable to find correspon-
dence under large viewpoint change of non-planar objects
[21]. One reason for this is that detectors select only salient
regions, discarding much of the image. While the detec-
tor scale parameter may be increased so that the regions’
union covers the entire image, large regions typically fail to
find correspondence under viewpoint change of non-planar
scenes. This is because existing detectors are at most co-
variant to affine transformations, and large regions, which
likely undergo complex transformations, do not have corre-
sponding detections in image 2.

In this paper, we propose a new approach to wide base-
line matching that addresses the limitations of interest point
methods and the cost of the naive approach. We use a hier-
archical decomposition of the first image’s domain. Large
regions are arranged at the top of the hierarchy and smaller
regions are at lower levels. The union of all regions at each
level covers the entire domain. Regions are not limited to
salient regions. The hierarchical decomposition enables ef-
ficient coarse-to-fine traversal through regions. Our method
starts with regions at the top of the hierarchy (likely most
discriminative) and proceeds to regions at lower levels of
the hierarchy, which are less discriminative but more likely
to match. A child region is only matched to the second im-
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Figure 1. Coarse-to-Fine Region Selection. Our method selects regions online during matching in a hierarchical fashion: large regions are
matched and sub-regions (lower levels in the hierarchy) are matched only if the large region does not match with enough fidelity. This
avoids searching all neighborhoods. [Left]: regions in the hierarchy that were processed. [Right]: I1 and I2 with matching patches (colors
show correspondence; solid boxes are correct matches, and dashed boxes are incorrect matches).

age if its parent region failed to match, eliminating the need
to search through all regions. See Figure 1.

Affine transformations of regions in the hierarchy can
approximate arbitrarily well any transformation arising
from viewpoint change (see Theorem 1), an advantage over
salient regions. Thus, we perform affine invariant matching
of regions in the hierarchy. Affine invariance is typically at-
tempted by a region normalization procedure [18], but this
is not fully affine invariant as noted by [22]. We achieve
affine invariance by comparing affine orbits, which are max-
imal affine invariants (see Theorem 2). Comparison of or-
bits is performed by efficiently traversing the affine space.
This is accomplished by a hierarchical decomposition and a
coarse-to-fine search of the affine space. This tailors coarse-
to-fine searches introduced in object detection [9, 10] to the
affine space. The idea is to construct a hierarchy of equal
complexity tests. Top levels of the hierarchy are coarse tests
that eliminate large portions of the parameter space. Lower
levels of the hierarchy contain tests that are increasingly se-
lective to fewer parameters. A top-down search through the
hierarchy avoids an expensive linear search.

Contributions: Our main contribution is using a hier-
archical decomposition of the image domain and a coarse-
to-fine selection of regions for wide baseline matching. We
show that the hierarchical approach finds more correct cor-
respondence of the images (with fewer false matches) under
viewpoint change than existing methods based on detectors.
Further, we show how to achieve efficient affine invariant
matching of regions with a hierarchical decomposition of
the affine space, using ideas in [9, 10] for the affine space.
Most ideas in this paper appeared in a technical report [27].

1.1. Related Work

Optical flow methods (e.g., [11, 15, 4, 25]) achieve
high accuracy correspondence of all pixels. They are de-

signed for small baseline not large displacements, large
scale/rotations changes, nor when large parts of the images
are occluded or disoccluded. There has been recent inter-
est (e.g., [5]) to generalize these methods to wide baseline.
Those methods use descriptor matching results as a prior to
compute optical flow. They are limited by descriptor match-
ing, which fails under large viewpoint change.

Block matching methods (see [12, 8] for surveys) are
used in video compression to estimate motion. These meth-
ods tesselate the image into blocks and estimate translations
of the blocks. Fixed block sizes are usually considered, but
more recent methods use adaptive block sizes so that motion
estimation from larger blocks can bias the motion of smaller
patches. The limitation of these methods is the translational
model; they are unable to cope with scale changes. Other
fixed size patch matching methods include [15, 24], which
match under affine but are based on local optimization, and
do not work for wide-baseline. Block matching incorporat-
ing spatial regularity is used in [1] to obtain correspondence
of each pixel. However, fixed size blocks are used, and thus,
it is unable to address scale changes.

Recently, a fast method for matching a template under
one affine warp to an image is introduced [13]. The method
uses branch and bound to search the affine space. However,
[13] does not address region selection. Thus, it does not
directly apply to matching under viewpoint change of non-
planar scenes, which induce piecewise diffeomorphisms.

2. Coarse-to-Fine Matching Algorithm
Our algorithm finds corresponding regions between two

images I1 and I2. It consists of two hierarchies that enable
coarse-to-fine search. The region hierarchy, decomposes
the image domain into regions. The affine hierarchy, de-
composes the affine space. The next two sub-sections de-
scribe the hierarchies and the coarse-to-fine searches.



2.1. Coarse-to-Fine Region Selection

The key properties of the region hierarchy are 1. re-
gions at the top of the hierarchy consist of large regions and
sub-regions are below in the hierarchy, and 2. any trans-
formation arising from viewpoint change can be approx-
imated arbitrarily well with low-dimensional (e.g., affine)
transformations of regions in the hierarchy. The first prop-
erty allows for efficiency in matching: any region that
has found correspondence necessarily implies that all sub-
regions have also found correspondence. Thus, there is no
need to match sub-regions. The second property is nec-
essary so that the transformation is approximated well. It
also allows invariant region descriptors to be computed for
matching, increasing efficiency.

We use a region hierarchy that contains regions that are
formed by successively splitting I1 into four equal rectan-
gles. Each region is a node in the hierarchy and the four
equal sub-rectangles are the children of the node. This hier-
archy satisfies Property 2 (see Theorem 1 in Section 3). In
practice, a minimum and maximum region size is chosen.

Our region selection algorithm (see Figure 1) starts with
regions at the top of the hierarchy. Each region is matched
to image I2 under the hypothesis that the region trans-
forms under the affine group. This is done by search-
ing all neighborhoods and locations in I2, and compar-
ing these neighborhoods to the region by mean normalized
cross-correlation (NCC). NCC is used to achieve invariance
to affine contrast change. The procedure for performing
this search efficiently requires another hierarchy and is de-
scribed in the next sub-section. This procedure returns the
first and second best affine transformsA1 andA2 that match
the region with highest fidelity to regions in I2.

The NCC scores s1 and s2 (assume s1 ≥ s2) between the
best affine transformed regions of I1, and the corresponding
regions in I2 are computed. Provided that the highest score
(s1) passes a threshold 0 < T1 ≤ 1 and the ratio of the
second best to the best score is such that s2/s1 < T2 (0 <
T2 ≤ 1), the region is accepted as a match and the sub-
regions in the hierarchy are not visited. A region that did not
pass the first threshold test with enough fidelity is refined as
follows. Any sub-region of the region that does not pass the
first threshold test with A1 (the transform of the region) is
matched (see Figure 2). Other sub-regions are accepted.

Remark 1. Interest point methods eliminate regions of I1
before matching by selecting only salient regions to reduce
region comparisons. In our approach, regions are elimi-
nated online: if a region in the hierarchy has matched, no
further sub-regions need to be matched, reducing region
comparisons. The fact that a region in I1 is matched to all
regions in I2 (in an efficient way) is less restrictive than co-
variant detectors. This implies that more of the image will
find correspondence using our approach.

region in I1 matched region in I2 sub-region to match

Figure 2. Sub-regions (colored squares, left image) of a region that
does not match with enough fidelity according to the first threshold
test, but uniquely, are not all matched. Only sub-regions that do
not match with enough fidelity according to the first threshold test
with the parent region’s affine transform are matched.

2.2. Coarse-to-Fine Affine Search

Let R be a subset of the image domain, and let I1|R de-
note the restriction of I1 to R. We describe our approach to
matching I1|R to a corresponding affine transformed region
I2|A(R) in I2 (see Figure 3). This requires that each loca-
tion in I2 is compared against all transformations of I1|R
by the group GL(2), where GL(2) is the general linear
group of non-singular 2 × 2 matrices. Direct search over
all of GL(2) is expensive, and so we introduce a hierarchy
to search over GL(2) efficiently.

In practice, we assume a finite sampling of GL(2). We
denote by p, q parameters of a two-dimensional subset of
GL(2), and we denote by gp,q the element of GL(2) in-
dexed by p, q. Let N ≥ 1, P = {p1, p2, . . . , p2N } and
Q = {q1, q2, . . . , q2N } be the sets of the parameters p, q.
The hierarchy is constructed as follows. Let L denote the
number of levels in the hierarchy. P and Q are split into
2N−L+l subsets of size 2L−l at level l of the hierarchy. Let
Pl
i,Ql

j denote these subsets, where i, j ∈ {1, . . . , 2N−L+l}.
Each subset at level l+ 1 is defined to be a subset of a set at
level l, i.e., Pl+1

i ⊂ Pl
b(i−1)/2c+1 and Ql+1

j ⊂ Ql
b(j−1)/2c+1

where b·c indicates the floor function. See Figure 4.
Given a node in the hierarchy at level l − 1, we denote

{Pl
i,Ql

j} the set of (four) subsets of the node in level l.
We would like to construct a method to choose the sub-
set that contains parameters of GL(2) which transforms
I1|R to a matching region in I2. To have the speed ad-
vantage of the hierarchy, we must do so without having
to match I1|R under each individual element of each sub-
set to I2. To this end, we define Bl

ij for each subset in
{Pl

i,Ql
j} as the average of affine transforms of I1|R, where

the affine transforms are the group elements arising from
2nl (nl ≤ L − l) samples in Pl

i,Ql
j . Let I1|R ◦ g−1 de-

note an affine transformed region defined on g(R). Then
Bl

ij :
⋂

p∈P,q∈Q gp,q(R)→ R+ and

Bl
ij =

1

22nl

∑
p∈P,q∈Q

I1|R ◦ g−1p,q , (1)

where P ⊂ Pl
i and Q ⊂ Ql

j contain 2nl elements. The idea
is thatBl

ij should correlate with a matching region in I2 pro-
vided that I1|R ◦ g−1p,q matches to I2 for some p, q ∈ Pl

i,Ql
j .



region to match averaged regions in a branch of affine hierarchy (top to bottom→) affine matched region

[top row]: yellow boxes are averaged regions selected; [bottom row]: the selected averaged regions (zoomed)

Figure 3. Matching of a region in I1 is done by using a coarse-to-fine hierarchical search over the affine space. Region descriptions at the
top levels of the hierarchy are highly invariant and thus respond to a wide range of affine transformed regions. Region descriptions at the
bottom are less invariant but more discriminative and thus respond to only a region oriented with respect to a specific affine transform. For
illustrative purposes, the hierarchy is shown for scale (vertical direction) and rotation (horizontal direction).

Figure 4. Illustration of the affine hierarchy (2N = 8, L = 3).
Each set Pl

ij contains the parameters of the sets below.

Further justification is given in Section 3. Note that only
2nl samples are used for computational speed. Ideally, one
would average over all samples, but experimental perfor-
mance shows that that is not necessary.

Now let the response Rl
ij(x) for each pixel x in I2 de-

note the NCC between Bl
ij and the region of I2 centered

at pixel x. Define i′j′ as the indices of the subset from
{Pl

i,Ql
j} that contains the highest value of the response, and

x′ij as a pixel of highest response, i.e.,

i′j′ = arg max
ij

Rl
ij(x

′
ij), x′ij = arg max

x
Rl

ij(x). (2)

The subsets Pl
i,Ql

j where ij 6= i′j′ are eliminated. This
narrows the search for the parameters to Pl

i′ ,Ql
j′ , and the

procedure is repeated. This gives Algorithm 1.

Remark 2. Each Bl
ij for l = 1 is an invariant or robust

descriptor selective to a wide range of transformed regions.
Lower levels of the hierarchy have descriptors that are less
invariant and more selective. These descriptors are com-
puted online in contrast to interest point methods where in-
variance to a predefined range of transformations (deter-
mined by the descriptor) is computed prior to matching.

We now discuss the parameterization of GL(2). First,
we decompose a matrix in GL(2) by using the QR decom-
position. A matrix in GL(2) is a product of a non-uniform
scaling, a shear in the x-direction, and a rotation:(

s 0
0 sλ

)(
1 h
0 1

)(
cos θ − sin θ
sin θ cos θ

)
. (3)

Algorithm 1 Hierarchical search of the affine space.
1: procedure AFFINESEARCH(P, Q, L, I1|R, I2. T1)
2: Downsample I1|R and I2 by d for speed
3: return HIERAFFSEARCH(1, {P1

i , Q1
j})

4: end procedure
5: procedure HIERAFFSEARCH(l, {Pl

i, Ql
j})

6: Compute Bl
ij and Rl

ij for each subset in {Pl
i, Ql

j}
7: Compute i′j′ and x′i′j′ using (2)
8: if Rl

i′j′(x
′
i′j′) < T1 then

9: return no match found
10: else if l 6= L then
11: {Pl+1

i ,Ql+1
j } := subsets below Pl

i′ , Ql
j′

12: return HIERAFFSEARCH(l+ 1, {Pl+1
i ,Ql+1

j })
13: else
14: xs := second highest local max of Rl

i′j′

15: Pl
i′ , Ql

j′ each have one element, p, q
16: return affine transforms (gp,q, x

′
i′j′), (gp,q, xs)

17: end if
18: end procedure

We assume s, λ > 0. We parameterize s and λ by a param-
eter p that goes around the s, λ plane. We similarly param-
eterize h and θ with a parameter q. This is done since using
uniform sampling of four parameters is costly. We use a
2048 total sample size and L = 5 for experiments.

2.3. Cost Savings of the Affine Hierarchy

We examine the tradeoff between cost savings of the
coarse-to-fine search in the affine space and the accuracy
of method. Clearly, the benefit of the affine hierarchy is
the reduction of a linear search to a logarithmic one. More
levels in the hierarchy lead to greater computational sav-
ings. However, more levels in the hierarchy means that the
regions at the top of the hierarchy are robust to a wider de-
gree of transformations, but less discriminative. This could



101 102 103 104
0.1

0.15

0.2

0.25

Number of NCC Operations

D
et

ec
tio

n 
R

at
e

 

 
NP = 2048, NL = 0

NP = 2048, NL = 1

NP = 2048, NL = 2

NP = 2048, NL = 3

NP = 2048, NL = 4

NP = 2048, NL = 5

NP = 512, NL = 0

NP = 512, NL = 1

NP = 512, NL = 2

NP = 512, NL = 3

NP = 512, NL = 4

Figure 5. Accuracy vs. Computation of the Hierarchical Affine
Search. The detection rate (with the false alarm rate fixed at 0.1) is
plotted against the number of NCC operations used in the match-
ing of a single region. More levels in the hierarchy (NL) imply
fewer NCC operations (proportional to computational cost) are
performed. NP indicates the sampling size of the affine space.
Results are reported on the Turntable dataset [21].

lead to false matches. We investigate the tradeoff experi-
mentally on the Turntable Dataset [21] (see Section 4). We
use a range of parameters s ∈ [0.8, 1.2], θ ∈ [−60◦, 60◦],
h ∈ [−0.2, 0.2], and λ ∈ [0.8, 1.2]. We explore sample
sizes of 512 and 2048. We run our entire algorithm (includ-
ing the search through the region hierarchy) and compare it
to the region search using a direct linear search of the affine
space. We choose thresholds T1 and T2 for the maximum
detection rate (accuracy) at a false alarm rate of 0.1. We
plot the detection rate versus the number of levels in the
affine hierarchy, which is proportional to the number of re-
sponse or NCC computations for each region. Results are
shown in Figure 5. Results indicate that for a sacrifice in
the detection rate of 0.01-0.02, there is a savings of nearly
a factor 200 NCC operations per region. The CPU runtime
on a single processor for matching the entire image using
MatLab code is shown in Figure 6. The computational time
of the entire algorithm is reduced by a factor of 10 in using
a hierarchy of five levels rather than a direct linear search of
2048 parameters. Images are 800× 600.

There are a number of speed-ups that are possible. For
example, using a hierarchy in the location (translation pa-
rameter). One could then localize the NCC computation
around the maximum response location (or a few highest
local maximum locations) from the previous level of the hi-
erarchy, instead of recomputing Rl

i′j′ on all of I2. Also,
many parts of the algorithm can be parallelized.

3. Theoretical Justification
This section outlines the theoretical justification for us-

ing the hierarchical image decomposition, and the invari-
ance properties of our affine matching scheme.

3.1. Justification of the Region Hierarchy

Transformations that are induced on the image plane
from viewpoint change are piecewise diffeomorphisms:

Definition 1. A piecewise diffeomorphism φ on Ω is
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Figure 6. Computational Time vs. Number of Levels in the Affine
Hierarchy. Total CPU time for full matching of two images on
the Turntable dataset for various number of levels in the affine
hierarchy and 2048 samples of the affine space.

1. a partitioning of the domain {Ri}ni=1 (the mapped
sets) and O the occluded set (Ri, O ⊂ Ω) such that

∪ni=1Ri ∪O = Ω, Ri ∩Rj = ∅ (i 6= j), Ri ∩O = ∅

where n ≥ 1 is the number of regions.

2. and maps φi : Ri → φi(Ri) ⊂ Ω such that φi is a
diffeomorphism

3. φ : Ω\O → Ω is one-to-one

We denote the set of all such φ as PDiff(Ω).

Although transformations relating two images under
viewpoint are piecewise diffeomorphisms, within local re-
gions of an image, the transformations are simpler:

Theorem 1. Suppose that φ ∈ PDiff(Ω) and ε > 0, then
there exists {Pi}, a sub-partition of {Ri} and affine trans-
formations Ai ∈ A(2) such that φ is approximated up to
error ε in C1-norm in each of the sets Pi, that is

‖φ−Ai‖C1 = sup
x∈Pi

|φ(x)−Ai(x)|+|Dφ(x)−DAi(x)| < ε,

(4)
where D denotes the Jacobian.

Proof. We assume compactness of each Ri. Since φ|Ri is
a diffeomorphism, each point in the interior of Ri has an
affine transform and a neighborhood such that (4) is satis-
fied by Taylor’s Theorem. Each point on the boundary of
Ri has a neighborhood inside Ri and an affine transform
such that (4) is satisfied using Whitney’s Extension Theo-
rem. By compactness, there exists a finite covering of Ri

by these neighborhoods. All these neighborhoods for each
Ri form a finite set {Pi} with (4) satisfied.

The partition {Pi} can be approximated arbitrarily well
with regions {P ′i} that are formed by splitting Ω succes-
sively into four equal rectangles. This justifies the choice of
our region hierarchy. Any piecewise diffeomorphism may
be approximated arbitrarily well by a finite collection of
affine transforms defined on regions obtained by splitting
the image domain successively into four parts.

While existing interest point matching schemes make
use of local affinity to design descriptors and detectors,



affine transforms of regions detected by detectors are not
sufficient to approximate a piecewise diffeomorphism.

3.2. Invariants and the Affine Search

We show how our affine search relates to invariant de-
scriptors. To do so, we formalize the notion of invariance
following [26] (see also [30, 23]). Let I denote the set of
images (i.e., functions of the form I : Ω ⊂ R2 → R for
all subsets Ω). A descriptor is a function F : I → F
where F is the description set. We are interested in descrip-
tors that are invariant to nuisances in image formation. In
some cases, nuisances may form a group (e.g., translations,
rotations, and affine transformations of the domain). Char-
acterizing certain invariants to groups can be accomplished,
as we show. We denote a group by G, and an element of G
by g. The action of g on image I as I ◦ g. We formalize
descriptor invariance to a group:

Definition 2 (Invariance to a Group). Let G be a group. A
descriptor F : I → F is invariant toG if for all I ∈ I and
g ∈ G, F (I ◦ g) = F (I).

A constant function is an invariant descriptor, but not
useful in matching. Maximal invariants are more useful:

Definition 3 (Maximal Invariant to a Group). A descriptor
F : I → F that is invariant to a group G is a maximal
invariant if for all I0, I1 ∈ I, F (I0) = F (I1) is equivalent
to the existence of g ∈ G that satisfies I0 ◦ g = I1.

Maximal invariants are important descriptors since they re-
move only the effect of G. Further, all other invariants are
a function of the maximal invariant. Maximal invariants are
related to orbits, which are defined as:

Definition 4 (Orbits). Let G be a group and I ∈ I be an
image. The orbit of I is denoted [I] and is [I] = {I ◦ g :
g ∈ G}. The set of all orbits in I is the orbit space, and is
denoted by I/G, i.e., I/G = {[I] : I ∈ I}.

Maximal invariants are characterized as:

Theorem 2. Let G be a group. Define a descriptor F as
F : I → I/G and F (I) = [I]. Then F is the maximal
invariant with respect to G.

Proof. Clearly, [I] is invariant to G: let g′ ∈ G then [I ◦
g′] = {(I ◦ g) ◦ g′ : g ∈ G} = {I ◦ g′′ : g′′ = gg′, g ∈
G} = {I ◦ g′′ : g′′ ∈ G} = [I], where the second to last
equality is obtained since multiplication by a group element
is an isomorphism. Also, if [I1] = [I2] then for each g1 ∈ G
there exists a g2 ∈ G such that I1 ◦ g1 = I2 ◦ g2. Setting g1
to the identity element yields that there exists g2 such that
I1 = I2 ◦ g2, and so the orbit is a maximal invariant.

To determine whether [I1] = [I2], it is enough to verify
that I2 ∈ [I1]. This property is used in our affine search

Figure 7. Visualization of the results of our algorithm on the Graf-
fiti, Boat, and Wall datasets in the Oxford dataset. From top to bot-
tom in each column: transformations with larger distortion. Cor-
responding colors indicate corresponding regions.

algorithm to test the equality of orbits. In fact, matching
[I1|R] to [I2|R′] for a region R′ is done by testing whether
a element of the orbit [I1|R] matches I2|R′ through NCC.

We now relate the averaging of I1|R ◦ gp,q over a subset
of P,Q in (1) to invariance and the orbit. As stated above,
any function of the orbit is also an invariant though not nec-
essarily a maximal invariant. Clearly, the integration over
the orbit

∫
G
I1|R ◦ g dg where dg is the Haar measure is a

function of the orbit and is thus invariant. This property is
also noted in [3, 16]. Since the average over the orbit may
not be discriminative enough, our algorithm averages over
a limited subset G′ of G as in [3]. This makes the resulting
descriptor robust to small perturbations of G′. This enables
matching of the descriptor to the corresponding region in
I2, provided that I1|R ◦ g ≈ I2|R′ where g ∈ G′.

4. Experiments
We test the performance of our algorithm on the Ox-

ford dataset [20] and CalTech Turntable dataset [21]. These
datasets are used to test the performance of wide baseline
matching algorithms under large viewpoint change. The
Oxford dataset concerns viewpoint change of flat scenes
and in-plane transformations of non-flat scenes. Thus, we
also test on the Turntable dataset, which concerns viewpoint
change of non-planar objects. Code will be available1.

We compare our algorithm to interest point methods,
which are designed for wide baseline. We test many detec-
tors including MSER, Harris-Affine, Hessian-Affine, and
the SIFT DOG. We found that the performance of the SIFT
descriptor to be best among many descriptors, and thus we
used SIFT descriptors. We also compare to ASIFT, which
is a fully affine invariant version of SIFT matching. Match-
ing is done using the ratio test introduced in [14], where a

1https://site.kaust.edu.sa/ac/frg/vision



Ours SIFT ASIFT Harris Affine Hessian Affine MSER

Figure 8. Visualization of matching results for methods tested. Results are shown for the Graffiti (top), Boat (middle), and Wall (bottom)
datasets. Only the results on image pairs with the greatest distortion are shown. Corresponding colors indicate corresponding regions.
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Figure 9. Precision-Recall (PR) curves for methods tested on Graffiti, Boat and Wall datasets from the Oxford dataset.

threshold Tr is used to reject matches that are not signifi-
cantly better than second best matches. Note that Tr plays
a similar role as the threshold T2 in our method.

4.1. Oxford Dataset Results

We test on the Graffiti, Wall, and Boat datasets. The
former two are used to test viewpoint change of flat scenes
and the latter is used to test scale changes and in-plane rota-
tions. To compare performance, we used the evaluation pro-
tocol in [19]. Methods are compared with precision-recall
(PR) curves generated by varying the decision threshold.
See Supplementary material for other evaluation metrics.
For our method, the threshold is T2 and for other meth-
ods the threshold is Tr. Precision measures the number of
regions matched correctly versus the number of matching
patches, and recall measures the regions matched correctly
versus the actual number of corresponding regions. Param-
eters of the detectors are chosen according to the code from
[19]. Ranges of parameters in our algorithm are chosen
as s ∈ [0.3, 0.9], λ ∈ [0.8, 1.3], h ∈ [−0.3, 0.3], and
θ ∈ [−80◦, 80◦].

PR curves are shown in Figure 9. They indicate that our
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Figure 10. Quantitative results for methods tested on the Turntable
dataset. [Left]: ROC curves, and [Right]: Detection rates versus
angle of rotation on the turntable for various methods tested.

method is more precise for roughly any recall level than any
of the other methods. Results indicate that the threshold T2
in our method can be chosen such that the precision and re-
call are both close to 1, indicating that regions nearly all cor-
rectly match with few errors. The other methods’ precision
drop considerably at high recall. Figure 7 shows visualiza-
tion of the matching results of our method. Figure 8 shows
visualization of the results of all methods for the most chal-
lenging images from each of the datasets. Almost all meth-
ods except ours find almost no correct correspondence for
high viewpoint change. ASIFT finds a lot of correct corre-
spondence, but at the expense of many incorrect matches,
which are filtered out by epipolar constraints. Another ad-
vantage of our method is seen visually: much of the image
is covered by correctly matching regions (see Supplemen-
tary for quantification), whereas other methods only have
sparse matches. Detectors detect large regions, but these
regions fail to match because they are only affine covariant.

4.2. CalTech Turntable Dataset Results

Next we test the performance of algorithms on the
Turntable dataset [21], which contains objects rotated on
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Figure 11. This experiment demonstrates the importance of our
region hierarchy. ROC curves for our method and various other
fixed sized region schemes are shown. Red curve is our result.
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Figure 12. Sample results on the Turntable dataset. The top row of each object group are images related by viewpoint changes of 30 degrees
and the bottom row is related by viewpoint changes of 60 degrees. Corresponding regions indicate corresponding regions.

a turntable every 5 degrees up to 60 degrees. The ROC
framework is used to show the tradeoff between the region
detection rate (rate of correctly matched regions) and false
alarm rate. Matching regions are verified using epipolar
constraints. See [21] for details.

The ROC curves are generated by varying the ratio
threshold Tr. Detectors each have a peak threshold Tp mea-
suring the saliency of regions detected (and controlling the
number of regions detected). Each ROC curve for each
method is optimized over Tp at a false alarm rate of 0.1. See
[21]. We similarly construct ROC curves for our method us-
ing T2 (analogous to Tr) and T1. Optimal ROC curves are
shown in Figure 10. This shows that our method has higher
detection rate at nearly all false alarm rates. Further, the
plot on the right of Figure 10 shows that our method also
has higher detection rates for all viewpoints at a false alarm
rate of 0.1. Sample results are visualized in Figure 12.

In the last experiment, we show that our region hierarchy,
composed of regions of various sizes, is essential to obtain-
ing the superior performance in the previous experiments.
To this end, we compare our method with and without the
region hierarchy. Without the hierarchy, regions are chosen
with fixed sizes varying from 16-128 (tessellating the image
as in a single level of our region hierarchy). These regions
are matched using our affine region matching scheme. Fur-
ther, to show that it is not just the affine orbit that leads to
superior results, we also compare to matching with HOG
descriptors [7] which are defined in fixed size regions. Fig-
ure 11 shows the quantitative results, and that our region
hierarchy (with varying region sizes) leads to higher detec-

tion rates at all false alarm rates than the other schemes.

5. Conclusion

We have introduced a new approach to wide baseline
matching to address large viewpoint change. Interest point
methods, which are the best methods suited for wide base-
line, were shown to have limited performance under large
viewpoint. Interest point methods make feasible the task
of comparing all regions between images to establish cor-
respondence by sampling regions based on saliency. This
eliminates regions before matching. This fundamentally
restricts performance since covariant salient regions are
sparse in the image. In contrast, our method increases the
amount of correct correspondence found, while reducing
the task of comparing all regions against regions in a dif-
ferent way. Specifically, our method uses a hierarchy of
regions and a coarse-to-fine search to eliminate regions sys-
tematically during matching. Our method was shown to
achieve affine invariant matching of regions in the hierarchy
by using another hierarchical search over the affine space.
Our approach was shown to out-perform existing interest
point methods on large viewpoint change on two bench-
mark datasets, while achieving reasonable computational
time and considerable speed-up compared to comparing all
regions between images. There are also a number of obvi-
ous speed-ups that can be done (mentioned in Section 2.3).
Future work includes exploring other region hierarchies tai-
lored to image features, and exploiting spatial regularity be-
tween regions.



Acknowledgements
This research was partially supported by KAUST base-

line funding and AFOSR FA9550-12-1-0364. We thank
Moamen Mokhtar for the experiments in the Supplemen-
tary material.

References
[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: A randomized correspondence algorithm for
structural image editing. ACM Transactions on Graphics-
TOG, 28(3):24, 2009. 2

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up
robust features (surf). Computer vision and image under-
standing, 110(3):346–359, 2008. 1

[3] A. C. Berg and J. Malik. Geometric blur for template match-
ing. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer So-
ciety Conference on, volume 1, pages I–607. IEEE, 2001. 1,
6

[4] M. Black and P. Anandan. The robust estimation of multi-
ple motions: Parametric and piecewise-smooth flow fields.
Comp. vision & img. understanding, 63(1):75–104, 1996. 2

[5] T. Brox and J. Malik. Large displacement optical flow: de-
scriptor matching in variational motion estimation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
33(3):500–513, 2011. 2

[6] J. Cheng, C. Leng, J. Wu, H. Cui, and H. Lu. Fast and accu-
rate image matching with cascade hashing for 3d reconstruc-
tion. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 1–8. IEEE, 2014. 1

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005. 8

[8] G. Facciolo, N. Limare, and E. Meinhardt-Llopis. Integral
images for block matching. Image Processing On Line,
4:344–369, 2014. 2

[9] F. Fleuret and D. Geman. Coarse-to-fine face detection.
International Journal of computer vision, 41(1-2):85–107,
2001. 2

[10] F. Fleuret and D. Geman. Stationary features and cat de-
tection. Journal of Machine Learning Research, 9(2549-
2578):1437, 2008. 2

[11] B. Horn and B. Schunck. Determining optical flow. Artificial
intelligence, 17(1):185–203, 1981. 2

[12] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G.
Chen. Survey on block matching motion estimation algo-
rithms and architectures with new results. Journal of VLSI
signal processing systems for signal, image and video tech-
nology, 42(3):297–320, 2006. 2

[13] S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-
match: Fast affine template matching. In CVPR, pages 1940–
1947. IEEE, 2013. 2

[14] D. Lowe. Distinctive image features from scale-invariant
keypoints. International journal of computer vision,
60(2):91–110, 2004. 1, 6

[15] B. Lucas, T. Kanade, et al. An iterative image registration
technique with an application to stereo vision. In Proceed-
ings of the 7th international joint conference on Artificial in-
telligence, 1981. 2

[16] S. Mallat. Group invariant scattering. Communications on
Pure and Applied Mathematics, 65(10):1331–1398, 2012. 6

[17] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-
baseline stereo from maximally stable extremal regions. Im-
age and Vision Computing, 22(10):761–767, 2004. 1

[18] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-
terest point detectors. International journal of computer vi-
sion, 60(1):63–86, 2004. 1, 2

[19] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 27(10):1615–1630, 2005. 1, 7

[20] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A
comparison of affine region detectors. International journal
of computer vision, 65(1-2):43–72, 2005. 6

[21] P. Moreels and P. Perona. Evaluation of features detectors
and descriptors based on 3d objects. International Journal
of Computer Vision, 73(3):263–284, 2007. 1, 5, 6, 7, 8

[22] J. Morel and G. Yu. Asift: A new framework for fully affine
invariant image comparison. SIAM Journal on Imaging Sci-
ences, 2(2):438–469, 2009. 2

[23] T. Poggio. The computational magic of the ventral stream.
2011. 6

[24] J. Shi and C. Tomasi. Good features to track. In CVPR, pages
593–600. IEEE, 1994. 2

[25] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow
estimation and their principles. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages
2432–2439. IEEE, 2010. 2

[26] G. Sundaramoorthi, P. Petersen, V. Varadarajan, and
S. Soatto. On the set of images modulo viewpoint and con-
trast changes. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 832–839.
IEEE, 2009. 6

[27] G. Sundaramoorthi and Y. Yang. Matching through fea-
tures and features through matching. arXiv preprint
arXiv:1211.4771, 2012. 2

[28] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense
descriptor applied to wide-baseline stereo. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 32(5):815–
830, 2010. 1

[29] T. Tuytelaars and K. Mikolajczyk. Local invariant feature
detectors: a survey. Foundations and Trends R© in Computer
Graphics and Vision, 3(3):177–280, 2008. 1

[30] A. Vedaldi and S. Soatto. Features for recognition: View-
point invariance for non-planar scenes. In Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on,
volume 2, pages 1474–1481. IEEE, 2005. 6


