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Abstract

Exploring image structure is a long-standing yet impor-
tant research subject in the computer vision community. In
this paper, we focus on understanding image structure in-
spired by the “simple-to-complex” biological evidence. A
hierarchical shape parsing strategy is proposed to partition
and organize image components into a hierarchical struc-
ture in the scale space. To improve the robustness and flex-
ibility of image representation, we further bundle the im-
age appearances into hierarchical parsing trees. Image
descriptions are subsequently constructed by performing a
structural pooling, facilitating efficient matching between
the parsing trees. We leverage the proposed hierarchical
shape parsing to study two exemplar applications includ-
ing edge scale refinement and unsupervised “objectness”
detection. We show competitive parsing performance com-
paring to the state-of-the-arts in above scenarios with far
less proposals, which thus demonstrates the advantage of
the proposed parsing scheme.

1. Introduction

Understanding structure of images is one of fundamen-
tal challenges in the computer vision community and be-
yond [26][15][32]. It is commonly agreed in the cognitive
research [15] that such structure is hierarchically organized
in general, and visual appearances along the structure range
from coarse to fine configurations. These evidences result
in a multi-scale image representation [16][34].

In this paper, we target at exploring such structure for
images, by proposing a novel hierarchical shape pars-
ing. By “shape parsing”, we mean to detect visual compo-
nents (such as parts of objects) indicated by shapes, which
will be organized into hierarchical structure according to
the coarse-to-fine cognitive rule (such as “part of”, and
“outline-and-details” relations) to generate a multi-scale
representation. Different from the image parsing [32][19]
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Figure 1. Example of the hierarchical shape parsing. (a) the orig-
inal image and the hierarchical edge parsing tree. For better visu-
alization, the edge segments of each node are in blue, while the
ones of its ancestor nodes are in black. (b) the results after appear-
ance bundling. To illustrate the coarse-to-fine phenomenon, the
appearances of child nodes are integrated to the parent node.

and scene parsing [31][9], which aim at finding semanti-
cally meaningful labels for pixels, the problem we address
in this paper focuses on exploring the structure of visual
scenes in an unsupervised manner, instead of inference on
particular semantic labels using supervised learning.

Parsing such a structure roles as a novel coarse-to-fine
feature representation to simulate the human vision system,
i.e., taking the scene outlines in the coarse scale (at higher
levels in the tree) and the appearance details in the fine
scales (lower levels) [26][15]. To a certain degree, such a
simulation is also similar to the “simple-to-complex” bio-
logically inspired feature [29].

Figure 1 shows an example about how we parse the struc-



ture of objects in the hierarchical shape parsing. In Figure 1
(a) the input image is parsed into two parts (e.g., the boat
and building) and further into more detailed components re-
cursively, in a top-down manner. The parent-children link-
age reflects certain “visual ontology” relationships (such as
“part of”, “co-occurrence”). We also demonstrate results
appending regions (in term of superpixels [10]) onto each
node, which leads to Figure 1 (b). This type of structure co-
incides with the coarse-to-fine cognition: the edges of larger
scale tend to be the out boundaries while vice versa [23].

Successfully parsing the image structure at low level can
benefit a wide variety of computer vision tasks, such as fea-
ture designing, scene understanding, object recognition and
detection. Three of the benefits are listed here but not lim-
ited. First, it is possible to design multiple-level image de-
scription, and partial descriptors of objects from the hier-
archical structure. Experimental results in this paper also
show that the hierarchical shape parsing tree captures the
organization in parts-objects-scene. Secondly, instead of
searching ROIs (e.g., objects) through sliding window, the
hierarchical structure of objects makes it more efficient in
object detection, recognition et al., similarly to Selective
Search [33] and BING [5]. In our experiment, by searching
along the hierarchical parsing tree, we reduce the candidate
region number from thousands of in [33, 5] to less than 20,
in the meanwhile retain competitive recall in object region
proposals. This is critical in object detection algorithms,
such as R-CNN [12]. Finally, it provides a way to structural
inference of the visual content, by integrating the recently
developed structural learning methods.

Related Work. To accomplish this goal, considerable
efforts have been made in the past years, among which the
structure of image is typically expressed as spatial split-
ting [20, 2], statistical co-occurrence [30] [39], and more
recently convolutional neural network [9].

To this end, approaches such as Spatial Pyramid Match-
ing (SPM) [20], and multiple level wavelets [25] can be cat-
egorized as the fixed spatial splitting in the global sense.
Although being efficient in practice, it lacks in providing
an explanation about the intrinsic scene-object-component
relationships. UCM [2] implements a more flexible re-
gion integration algorithm based on edges / boundaries, in
a bottom-up manner. With the popularity of visual pattern
mining and bundling techniques like [38][28][35], bottom-
up data-driven structure parsing has also been widely in-
vestigated. Their main drawback lies in the lack of global
insights at the scene level, while being computationally in-
tensive when extending to higher-order phrases.

The most recent advance in convolutional network [18]
also suggests efficient approaches that utilize unsupervised
or supervised feature learning to discover the structure
between different level of neurons, by incorperating the
convlution and max pooling operations on different lay-

ers. However, understanding and extracting these hierarcal
structures remains a problem.

Uijlings et al. propose the method “selective search”, by
using hierarchical image segmentation to build the image
structure, and achieves improvements on objectness pro-
posal, in both recall and efficiency. It is further integrated
into object detection algorithms based on Deep Convolu-
tional Nerual Networks, e.g., R-CNN [12], and reports to be
significant efficient compared with traditional sliding win-
dow approaches. Despite positive, Selective Search uses a
heuristic bottom-up integration of super-pixels, which omits
the cognitive principle in human vision system. In the
meanwhile, thousands of object proposals produced by the
algorithm impose great burden on convolutional neural net-
works and make the object detection computational expen-
sive. Unfortunately, efficiently exploring the image struc-
ture, if not impossible, remains a challenging problem.

Inspiration. Studies in scale space [34][16][22] re-
veal that the hierarchical organization of visual informa-
tion widely exists in image structure. And different scales
will exhibit representation on various level of details (i.e.,
“coarse-to-fine”). On the other hand, shape (e.g., bound-
aries, and edges) provides a good indication of objects and
components, which plays an important role in human cog-
nition [26]. It has been widely recognized as a fundamental
cue towards scene understanding and structural description
[17][40][23]. Bruna and Mallat also point out that instead
of learning the visual representation, geometric properties
such as scale and spatial layout provide plenty of meaning-
ful information on feature representation [4].

Inspired by our previous work on the scale of edges
[23], we are motivated to parse hierarchical structure of im-
age components according to their scale distributions and
shapes, as the example shown in Figure 1. To further im-
prove the discrimination of parsed visual components, ap-
pearances of image regions are embed correspondingly in a
statistical way.

As for visual search and matching, human brains rec-
ognize objects based on not only visual appearances, but
also heavily relying on structure, according to recent ad-
vance in cognitive study [7]. With such a structure, we
simulate the human cognitive mechanism in visual search
as a conditional matching process: matchings are formu-
lated as Markov Process, with dependencies defined by the
structural “visual ontology” along the hierarchical parsing
tree. By simple statistical inference, we derive a hierar-
chical structural pooling strategy to approximate the above
process when building region descriptions.

Approach. Our approach starts with building a Hier-
archical Edge Tree in a top-down manner. Given such a
coarse-to-fine shape structure, local regions are further ap-
pended onto corresponding tree nodes to increase the dis-
criminative ability. When matching two parsing trees /
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Figure 2. Workflow of the proposed hierarchical shape parsing
with appearance pooling scheme.

subtrees, an structural appearance pooling operation is per-
formed based on a Markov Process, in which the parent-
children dependency is forced. By this pooling operation,
the tree hierarchy is encoded together with the appended
appearance information, and it avoids the time-consuming
recursive subtree alignment schemes in existing works. The
whole work flow is shown in Figure 2. In this paper, we
show two exemplar applications about our scheme, includ-
ing unsupervised objectness detection [1, 33]. Quantitative
experiments with comparisons to the state-of-the-arts show
advantages of our algorithm.

The rest of the paper is organized as following: Section 2
introduces the hierarchical shape parsing. In Section 3 we
perform the structured appearance pooling, which is further
used in description and matching of object components. We
show two exemplar applications in Section 4, and finally
conclude the whole paper in Section 5.

2. Hierarchical Shape Parsing
To parse the structure of images, we first introduce the

building of the Hierarchical Edge Tree in Section 2.1, which
decomposes the image structure based on a edge scale de-
tection. Local appearances, e.g. superpixels, are sub-
sequently appended to enrich its discriminability in Sec-
tion 2.2. Both phases are fully unsupervised.

2.1. Hierarchical Edge Tree

Inspired by our results in the edge scale detection [23],
as well as previous researches in scale space [16][34], we
propose to parse the hierarchical structure of an image by
organizing a shape hierarchy. The conclusion that scales of
edges are capable to distinguish different levels of details
[23], leads to our approach clustering edges varied in both
spatial and scales and organizing into a hierarchy.

Edge Scale Detector. The algorithm starts with building
the edge scale detector, following the approach in [23]. It
detects edges and their scales simultaneously by building an
Anisotropic Scale space, upon which a 3D-Harris detector
R(x, y, t) is performed to find the maximal edge response
over the scale factor t:

s(x, y) = arg max
t
|R(x, y, t)|, R(x, y, t) < 0, (1)

where s(x, y) is the detected scale for pixel (x, y). This in-
dicates the edge being salient on the corresponding image
resolution. Applying Equation 1 over the Anisotropic Scale
space converts the target image into hierarchical organiza-
tion of shapes with different scales, as shown in Figure 3 (a).
We then distill and partition the image based on the “coarse-
to-fine” principle. In such a case, the edges of larger scales
correspond to the object boundaries, while those of smaller
scales are the texture details.

We then denote the boundary of each object as a convex
surface Ci,∀i ∈ N in the scale space where N is the total
number of objects in the scene, as shown in Figure 3 (b).
By quantizing along scales in sj , j = 1, 2, . . . ,K, a hier-
archical shape representation of the image is derived into a
tree structure, as shown in Figure 3 (c), in which the root
performs as the global representation, while the subsequent
siblings correspond to objects or their components at a finer
level.

Parsing as Shape Clustering. To efficiently and effec-
tively distinguish the objects / components Ci from each
other as shown in Figure 3 (b), we utilize the spatial infor-
mation as a separable rule, based on the hypothesis that the
edges from the same object or component are more likely to
be connected. The adjacency between edge strokes is mea-
sured by the smallest Manhattan distance between all the
pixels from the two edge segments, i.e.,

d(s, s′) = min
i∈s,j∈s′

d(i, j)

where s and s′ are two edge segments while i and j are
pixels on s and s′ respectively. This distance works well for
various edge / boundary applications to connect adjacent
segments [11]. We use clustering to re-group all the edge
segments into “connected” shape contours.

More specifically, as shown in Figure 3 (b) and (c), given
the detected set of edges C with scale factors S, we first
split S into the K-partition S = {s1, s2, . . . , sK}, and then
use spectral clustering [27] to cluster shapes falling in the
scale interval C|sk,∀k ∈ [1,K] into spatially independent
components, i.e.,

C|sk =
⋃
i

Ck,i, and ∀i, j, Ck,i

⋂
Ck,j = φ. (2)

The above operation can be digested as separating differ-
ent objects from a given scene, with the consideration of
determining the component numbers robustly. In our exper-
iments, to ensure balance and regularize the tree structure,
we enforce to use the largest two clusters in all C|sk, which
leads to a binary tree structure.

This operation is conducted in a top-down manner as de-
tailed in Algorithm 1, which results in the Edge Tree by con-
necting each component according to the “belongingness.”
That is, the node Ck,i is assigned to the spatially nearest
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Figure 3. Illustration of building the hierarchical edge tree with spatial clustering: (a) the edges of different scales vary in descriptions of
visual contents, while larger scales tend to be coarse and smallers to be the fine details (b) Represent the scale space by convex surfaces,
and quantize scales into different tree levels; (c) Motivation and the basic process of spatial clustering.

Algorithm 1: Hierarchical Shape Parsing
Input: Shape collection C and scale indicator S for

image I
Output: Edge Tree T

1 T = Φ;
2 Split S into {s1, s2, ..., sK};
3 for k = 1,...K do
4 Find C|sk;
5 Perform spectral clustering on C|sk, into Nk

clusters Ck = {Ck,1, ..., Ck,Nk
};

6 for Ck,i ∈ Ck do
7 Find the nearest node Ck−1,j ∈ Ck−1 in T ;
8 Add Ck,i into T as the child node of Ck−1,j ;
9 end

10 end
11 return T

nodeCk−1,· as a child. Intuitively, a scene would be decom-
posed into objects while an object would be decomposed
into components. Figure 3 (c) shows an example of hierar-
chical edge parsing into three levels, where the whole scene
is first parsed into objects, e.g. “building” and “boat”. In the
second layer, each object is further parsed into components
or parts, e.g., “building” into ‘windows” plus “platform”.
Such a parsing provides a much higher flexibility compared
to the fixed splitting such as Spatial Pyramid Matching [20].
2.2. Region Bundling

In the second step, we append the local region appear-
ances onto corresponding nodes in the edge parsing tree
to enrich its discriminability. Typically, only the geomet-
ric properties of edge segments are ambiguous in object
recognition, such as length, curvature and etc. With the
appearance of regions enclosed in the edge contours, more
robust visual features could be extracted and utilized to de-
scribe objects. However, the difficulty lies on determining
the most suitable region scale and appending corresponding
regions to our edge tree, in the case multiple subtrees are
hit.

We adopt a heuristic solution to resolve the challenge.

First our algorithm segments the image into superpix-
els [10]. Then for each node on the edge tree, a convex
hull of its edge segments is calculated to claim its “belong-
ings”. Finally superpixels are bundled to the node which en-
closes the superpixel, in a bottom-up direction. This heuris-
tic method works well because: 1) superpixels are those
uniform small regions in an image, which are considered
being enclosed by edges; and 2) smaller superpixels are reg-
istered onto lower level nodes in a bottom-up manner, which
solves the “belonging” ambiguity.

3. Structured Appearance Pooling
Bundling the structural information in visual matching

provides meaningful discriminations to object detection,
texture classification etc [36], especially in complex scenes.
This agrees with the hypothesis in human cognitive proce-
dure that not only the appearance but also the spatial and
scale structure play important roles in object matching and
recognition [7]. The hierarchical shape parsing tree pro-
vides an alternative of the coarse-to-fine search strategy.

To fully deploy the structure information in hierarchi-
cal shape parsing trees to object matching, we utilize a
joint probability formulation to model the matching pro-
cess. The basic principle is that two objects or components
are matched with higher probability if their appearances
are similar and their structures coincide. In our scenario, it
means two tree nodes are matched if they are close in visual
feature space and their sub-tree structures agree with each
other.

In this section, we first introduce the notations of our for-
mulation, then a simplified conditional probability model
for object matching based on Markov Process is illustrated
to model the above principle. Finally, this model is relaxed
and leads to a structural pooling algorithm to generate tree
node representation with such structural information em-
bedded, to further improve computational efficiency and fa-
cilitate feature vector indexing.

Notation and Preliminary. For each region bundled on
the hierarchical parsing tree, we extract SIFT features [24]
that quantilized using Bag-of-Word model (with dictionary
size 1, 000), to discribe its appearance. All the notations are



listed in Table 1:

Table 1. Symbols and notations in Structured Pooling inference
Variable Notations

Ri Node i in the parsing tree
xi Feature vector for Ri

Ti The sub-tree rooted at Ri

Xi Representation for Ti

Ti,k and Ri,k Sub-trees / Children of Ri

Tree Matching as Markov Process. The above prin-
ciple indicates a subtree matching problem. However, di-
rect subtree matching with exhaustive scanning is compu-
tational expensive, in this paper we propose a conditional
probability inference along tree structures top-down. Since
we are aiming at measuring the similarity between objects
considering both the appearance and structure, the goal of
matching two objects or components is to calculate the joint
probability of two sub-tree structures Tq and Ti, where the
former is the query object with its structure while the lat-
ter is the sample in the target collection. More specifically,
given the representation Xq and Xi as well as the structure
Ti, the problem can be formualted as:

p(Xq, Xi|Ti) = p(Xq, Xi|Ri,∪Ti,k)

= p(Xq, xi|Ri) ·
∑
k

[p(Xq, Xi,k)p(Ri|Ti,k)],

(3)
where Ti,k → Ri → Ti is a Markov process, which in-
dicates the independence in statistical inference. By as-
suming equal contribution among individual sub-tree, i.e.,
p(Ri|Ti,k) = 1

K , we have:

p(Xq, Xi|Ti) = p(Xq, xi|Ri)
1

K

∑
k

p(Xq, Xi,k)

= p(Xq, xi|Ri)E[p(Xq, Xi,k)],

(4)

which is denoted as Markov-Structured Matching Rule
thereafter.

Structured Appearance Pooling. The above Markov
Matching Rule derives a structured appearance pooling,
which facilitates the fast representation and matching be-
tween hierarchical parsing structure of images. To do this,
we assume the current node Ri and the successors Ti,k are
independent, the Equation 4 can be relaxed as:

p(Xq, Xi|Ti) = p(Xq, (xi · E[Xi,k])), (5)

where Xi = xi ·E[Xi,k] indicates the pooling of Xi, which
comes from feature xi of the current node and the average
pooling [3] of all its subtrees E[Xi,k]1. To further simplify

1Note that our structured pooling differs from the local descriptor pool-
ing in building spatial pyramid [37][13], which involves more complex hi-
erarchical structure inference and embedding, as well as Markov Process
based approximation.

(a) (b) (c) 

Figure 4. Examples of edge scale detection before and after our
edge scale refinement based upon the state-of-the-art edge scale
detection scheme in [23]. (a) is the original image, (b) is the detec-
tion result using [23], (c) is the proposed scale refinement. Red in-
dicates larger scales while blue means smaller. The refined results
are more reasonable by treating the out boundary of the building
as uniform and gets the largest scales.

the computation, we use the intersection operation instead
of the multiplication, with some tolerance of quantization
error.

In practice, we build the above appearance representa-
tion in a bottom-up manner, and for the structure collection
T = {Ti; i = 0, 1, 2, ..., N}, a series of descriptors are ob-
tained as X = {Xi;Ti ∈ T}. The X describes the visual
features of all the parsed scenes, objects and components,
based on which the matching can be done for both the whole
image, or objects or parts of this image.

Usage of Tree Matching and Structural Pooling: The
“Structural Appearance Pooling” could be utilized as a vi-
sual feature constructor for various computer vision prob-
lems, and is adopted in our “objectness” experiment in Sec-
tion 4.2. We use the structural pooled feature to build index
and construct queries.

4. Exemplar Applications
Exploring the hierarchical structure of images has the

potential for a wide variety of computer vision applications.
Two representative applications are investigated with quan-
titative evaluations, i.e. structural edge scale refinement and
unsupervised objectness detection in this paper.

4.1. Structural Edge Scale Refinement

The scale of visual elements, defined as on what level the
image details could be perceived by human eyes [16], is a
fundamental concept in computer vision. It is important for
feature designing, boundary detection and object recogni-
tion. In this example, we are trying to see how the proposed
hierarchical structure of images can help to refine individ-
ual edge scale detections. Moreover, considering the fact
that the visual elements of larger scales tend to be object
outlines while the smaller ones tend to be inside details, it
also provides a validation on how the constructed hierarchi-
cal structure coincides with human perception.

The basic assumption is, the edges of the same compo-
nent should share similar scales. Under this circumstance,
the initial edge scale is determined using the method pro-
posed in [23], by searching the local extreme in anisotropic



Table 2. Comparison on the edge scale detection between the pro-
posed method and [21] and [23]

Method Accu Accuordered

Lindeberg[21] 0.300 0.103
3D-Harris [23] 0.370 0.469

SegPropagation [23] 0.375 0.478
Hierarchical Refinement 0.397 0.485

scale space. Then, our task is to refine these initial detected
scales based on the levels of their corresponding nodes in
the hierarchical edge tree. More specifically, the edges reg-
istered to the same node should be of similar scales. To that
effect, given the node Ni in the shape parsing tree T , for
each edge ej ∈ Ni, we perform a median-filter to filter out
the outlier scales.

We tested the refinement of edge scales on the Scale of
Edge Dataset [23], where there are 36 natural images with
manually labeled edge scales by human beings on 5 differ-
ent resolutions. The groundtruth of this dataset reflects the
levels of scales on which edge segments can be perceived
by human beings. We compare our scheme with both the
Isotropic approach [21] and 3D-Harris alternatives [23], as
shown in Table 2.

In Table 2, two measurements are evaluated: the or-
derless pair-wise order accuracy Accu and the ordered on
Accuordered, same with those used in [23]. From the com-
parison, it is obvious that the proposed method improves
the performance significantly, by adding the object / com-
ponent scale consistency constraint. The intuition behind
is, the structural information (i.e., the Hierarchical Parsing
Tree) imposes the consistency of scales within the same vi-
sual components, which leads to less wrong detection com-
pared with the original algorithm.

Moreover, the improved performance suggests that the
organization of image components in the hierarchical shape
parsing tree coincides with human perception: the edges of
larger scales labeled by human are arranged on higher levels
of the tree. Figure 4 further shows exemplar comparisons
before and after our hierarchical tree based refinement. The
boundaries of the building (especially the roof) are of larger
scales which means they are assigned to high level in the
hierarchical shape tree.

4.2. Objectness

Objectness Detection. The second scenario to validate
the proposed shape and appearance parsing approach comes
from the so-called “objectness” detection task. Objectness
[1], as proposed in [1], aims at judging whether a given re-
gion contains a generic object, which poses great potential
to improve the object detection efficiency, for example Se-
lective Search [33] and BING [5]. The proposed hierarchi-
cal parsing tree well fits the objectness detection by looking
over the object “structure”, that is, objects are more likely
to have a common shape, appearance, and structure, as fre-

quently appeared in the reference image corpus, where the
“common” is defined by its density in the joint feature space
of both the appearance and the structures encoded in shape
features.

We use the feature derived from structural pooling in
Section 3 to describe region descriptions composed by both
appearances and structure. More formally speaking, given a
collection of images I = {In}n∈N , where each image In, T
denotes the collection of parsed hierarchical structures, and
Xn = {Xn,i} denotes the descriptors build in Section 3 for
image n. Let

X = ∪n∈NXn (6)

be the collection of structure descriptors for all structures
extracted from I. The objectness can be expressed as the
density of X in the feature space, because Xn exhausts all
the existences of possible objects / components.

In practice, instead of estimating the density of X, we
perform a K-Means clustering on the feature collection X.
Thereafter, the cluster centers Ok ∈ O are the potential
common structure and appearance template for some object,
which in means of a discrete “objectness”.

Subsequently, for each node Xi ∈ X in the parsing tree
of the input image I , where X is the collection of all the
parsed structures, its objectness o(Xi) can be calculated as

o(Xi) = p(O|Xi) ∝ 1/ min
Ok∈O

‖Xi −Ok‖2, (7)

by which we evaluate the likelihood being an object in terms
of its distance to the nearest cluster center (object template).

Experiments and Evaluation. For validation, we use
the Pascal VOC 2007. for training and testing, which con-
tains 20 object classes over 4, 592 images. The number of
clusters is set to be K = 100, considering the number of
classes in VOC Pascal 2007 dataset and the total number of
nodes generated by our algorithm. To perform the hierarchi-
cal parsing, we fixed the depth of binary-tree to be D = 4,
which results 14 nodes for each image (the root node is not
considered as a candidate).

To evaluate the performance of the proposed “Object-
ness”, we use the similar numeric criteria as [1]: the sin-
gle value evaluation measurement Area Left of the Curve
(ALC), which is the area bounded by the Detection Ratio /
Signal-To-Noise (DR/STN) curve.

The results of ALC are shown in Table 3, compared
with several baseline methods, including the saliency based
methods [14], feature detection based method using HoG
[6], random chance, and variances of the Objectness in [1]2.
We also compare with the all the single-cue methods in [1]:
MS (Multi-scale Saliency), CC (Color Contrast), ED (Edge

2As the structural objectness by means of hierarchical parsing tree is
treated as a low level feature representation, we only compare with the
single feature objectness detection.



Table 3. The ALC measurements comparison between random
choose (RC), the proposed method, the parsing tree without struc-
tural pooling, and salience based method [14], HoG [6], and the
methods in [1] (MS, CC, ED, SS)

Method ALC Score
Saliency [14] 0.004

Random Chance 0.025
HoG [6] 0.035
CC [1] 0.064
ED [1] 0.083
MS [1] 0.137
SS [1] 0.193

Objectness w/o SPooling 0.187
Structured Objectness 0.215

Density), and SS (Superpixels Straddling). The compar-
isons show that:
1) Saliency: Due to the intrinsic that our method could be
viewed as a structured saliency measurement, it performs
much better than all the salience detection methods, i.e.,
Saliency [14] and MS [1].
2) Feature: It outperforms feature-based methods (5 - 8
times more accurate), i.e., HoG [6] (shape and texture) and
CC [1] (color), in both of which the structural is missing.
3) Segmentation and Edges: Our structural objectness also
performs much better than ED (edge features) [1], and
achieves competitive performance as SS (Superpixels Strad-
dling) [1]. However, our proposed method is totally unsu-
pervised, while SS is supervised and trained as a two class
classification problem (object and non-object).
4) Structural Pooling: we also tested the performance of the
proposed method without using structural pooling to derive
features, which performs worse as shown in Table 3. The
main reason is that without structural constraints, the non-
object regions will have chance to be miss-ranked in the top
of returned results and reduce the precision.

Table 4. The number of windows (candidate regions) used in [1]
and the structural objectness

HoG[6] Objectness [1]
#Win 1,000 1,000

Selective Search[33] Proposed
#Win 395 14

Another advantage of our structural objectness is the ef-
ficiency. Traditional methods [1] [6] rely on the sliding win-
dow, which evaluate everywhere on the test image, which is
set 1,000 in [1]. On the contrast, our algorithm reduces the
number of candidate windows dramatically. In our experi-
ments, we build a 3-level binary tree for each image, lead-
ing to 14 nodes. While Selective Search [33] utilizes 395
windows to achieve similar recall. Detailed comparison is
shown in Table 4.

In more details, we show the efficiency of the proposed
hierarchical structure in Figure 5(a), for the task of object-

ness detection. From this figure, we have several advantages
compared with state-of-the-arts: 1) Due to the more effi-
cient candidate region selection introduced by the structural
prior knowledge in our algorithm, we dramatically reduce
the number of false alarm which leads to a fairly high pre-
cision. 2) Most of the windows detected by MS, CC and
SS [1] are overlapped because of sliding windows in their
methods, and the recall is very limited though large number
of candidate regions are returned. However, our method can
get rid of this problem. Figure 6 further shows several ob-
jectness detection results of our proposed methods. It can be
seen that most of our bounding boxes are within the object
areas.

(a) (b)

Figure 5. (a) Performance comparison: PR-curves of different
methods on the task of objectness detection, by varying the thresh-
olds. (b) Recall of (Structural Objectness) on object proposals.
Tested on VOC 2007 test dataset.

Architecture of Parsing Tree: Different architectures of
the parsing trees may derive different results. In Figure 5(b)
we show Recalls of objectness detection for binary parsing
trees with depth D = 4 and D = 5 respectively. Note that
the recall is only determined by the total number of nodes
in the parsing tree; and for a complex scene, a deeper binary
tree is capable to represent its structure. Using deeper pars-
ing trees (e.g., depth 5) could generate regions for objects
of fine scales, but will also produce more non-meaningful
tree nodes, which increases the chance of false alarm. As
seen in Figure 5(b), parsing tree of D = 4 performs much
better in top 10 detections than D = 5. An statistic shows
that most object regions occurs in level 2 and level 3 nodes
in our parsing tree. To balance the performance and effi-
ciency, we adopt depth D = 4.

Objectness on the Hierarchy To further understand
how the shape parsing tree helps the objectness detection,
several samples are shown in Figure 7, which tracks the
objectness detection results in different levels. As looked
in bottom-up, the detection of low-levels focuses on object
parts, such as the wheels of the motors, and it gradually in-
tegrates into object-level detections as towards to the root.
It is critically important for partial matching and detection,
and even designing powerful image features.

Recall on Object Proposals. To further validate our
analysis of the proposed algorithm, we test the recall of ob-



Figure 6. The detection results using the proposed “structured objectness” based on the shape parsing tree compared with objectness [1].
The yellow rectangles are our detection results using threshold = 75, and the ones of MS method in [1] are shown in red. Generally, we
achieve competitive results. Especially, for the complex scenes such crowds, we perform acceptably good.

(a)

(b)

Figure 7. The learned objectness in a hierarchical organization. It
shows how the structural information affects the detection process.

ject window proposals for the structural objectness, on VOC
2007 test dataset. We also compare our algorithm with Se-
lective Search [33]. For the selective search, we use the
same settings as [33] on VOC 2007 test dataset. Figure 5(b)
shows the recall of our algorithm. Though our algorithm
only achieves a recall at 0.612 using 14 proposals, com-
pared with 0.829 for selective search using 3, 574 propos-
als, we perform much better in the top ones, which suggests
the high hit rate in the top results. In the meanwhile, selec-
tive search can only achieves a recall of 53.5 using top 100
proposals. When we increase the level of parsing tree from
3 to 4, and the proposal number increases from 14 to 30,
the recall can reach 0.732 in the top 30 proposals. Selective

search can only achieve such a performance using around
300 proposals.

5. Conclusion and Future Work

In this paper, we study the problem of exploring image
structure by organizing visual components into a hierarchi-
cal parsing tree. The main technical contributions are two-
fold: first, we parse an image into a hierarchical structure
tree according to scales and shapes (in term of edges), and
link the parsing result with local appearances in an unsuper-
vised way towards a more discriminative scene understand-
ing; second, we propose an efficient yet robust structural
feature representation by means of a structural pooling strat-
egy, which facilitates fast tree matching between two hier-
archical parsing trees. We demonstrate that the hierarchical
parsing scheme can be applied to various computer vision
problems by providing more discriminative features such as
object region proposal. We also show how the structural in-
formation helps improve feature discrimination through two
exemplar applications.

For future work, we will extend the shape parsing
scheme proposed in this paper to work under a supervised
manner, such as semantic image segmentation and parsing.
Though positive, the obtained parsing tree still needs fur-
ther refinements due to the complicated scale distribution
in the scale space for complex scenes. In order to im-
prove the expressive power for complex scenes, it is fea-
sible to employ randomized algorithms to add perturbations
in the scale splitting similar to the approach in [8], by which
forests are built instead of a tree for each image.
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