
Subgraph Decomposition for Multi-Target Tracking

Siyu Tang1, Bjoern Andres1 Mykhaylo Andriluka1,2 Bernt Schiele1

1Max Planck Institute for Informatics, Saarbrücken, Germany 2Stanford University, USA

Multi-target tracking can be formulated as an optimization problem with
respect to a graph whose nodes correspond to detection hypotheses and
whose edges connect detection hypotheses that hypothetically describe the
same target. A commonly employed objective of the optimization is to se-
lect a subset of nodes and edges in such a graph to maximize similarity of
connected detection hypotheses, while maintaining constraints that prevent
splits and merges of tracks.

By far the most common approach is to choose the initial graph such that
detection hypotheses are connected only across time (not within the same
time frame) and to constrain the solution such that connected components
of selected detection hypotheses are paths (that do not branch). With respect
to a linear objective function, this problem is a Minimum Cost Disjoint Paths
Problem with respect to the initial graph. It is used, explicitly or implicitly,
in many modern tracking algorithms including [2, 3, 4].

While being intuitive, the Disjoint Paths formulation has a notable caveat:
Typical target detectors yield, for each time frame, many similar (and typ-
ically equally plausible) detections of the same target. Within the Disjoint
Paths formulation, it becomes necessary to choose, for each time frame and
target, one best out of many similar (and plausible) hypotheses. Various
recipes are proposed in the literature to address this challenge. E.g., [2]
rely on a greedy iterative procedure that finds one track at a time and then
removes corresponding hypotheses, or [4] performs several rounds of opti-
mization that merge detections into tracklets and then into full tracks. Un-
fortunately, all these methods depend on parameters that need to be tuned
carefully, as noted in [2, 4].

Embracing the possibility of having multiple plausible hypotheses per
target and frame motivates us to formulate multi-target tracking as a Mini-
mum Cost Subgraph Multicut Problem. The feasible solutions of this formu-
lation are such that possibly multiple hypotheses per track and time frame
are selected and clustered, resulting in an overall rigorous and elegant ap-
proach to link, cluster and track targets jointly across space and time. To il-
lustrate the similarities and differences to prior work we implement a version
of a tracking algorithm based on the Minimum Cost Disjoint Path Problem.
Although conceptually simple, its output is already on par with the state of
the art for public benchmark sequences, as we show in our paper.

This paper makes the following contributions: First, to our knowledge,
our work is the first to propose a Subgraph Multicut model for the multi-
target tracking problem jointly solving the spatial and temporal associations
of detection hypotheses. Second, we provide an in-depth analysis and com-
parison of the Subgraph Multicut and the Disjoint Paths models. Our re-
sults suggest that the Subgraph Multicut model has considerable advantages
due to the fact that state-of-the-art object detectors output multiple hypothe-
ses per target. Third, besides proposing an exact solver, we also provide a
heuristic solution based on the Kernighan-Lin algorithm [1], which makes
the method applicable to large sequences. Finally we perform extensive ex-
periments and present superior results compared to the state-of-the-art.

Subgraph Multicut Problem We formulate multi-target tracking as a Min-
imum Cost Subgraph Multicut Problem (Def. 1). The formulation is with
respect to an undirected graph G = (V,E) whose nodes V are all hypoth-
esized detections of an entire video and whose edges E connect pairs of
detection hypotheses that hypothetically describe the same target, including
pairs in the same video frame.

The feasible solutions of the Minimum Cost Subgraph Multicut Prob-
lem (Def. 1) define subgraphs G′ = (V ′,E ′) of G which are encoded by
x ∈ {0,1}V , the characteristic function of the subset V ′ = {v ∈ V | xv =
1} ⊆V of nodes, and y ∈ {0,1}E , a characteristic function defining the sub-
set E ′ = {vw ∈ E | yvw = 1} ⊆ E of edges. More specifically, the subgraph
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Figure 1: Overview of the Subgraph Multicut tracking method: (clockwise)
detection hypotheses, overlapping tracklet hypotheses, hypotheses decom-
position (clustering jointly across space and time) and final tracks (dotted
rectangles are interpolated tracks).

G′ is constrained (by Def. 1) such that each connected component (V ′′,E ′′)
of G′ contains all edges E ′′ =

(V ′′
2
)
∩E.

The objective function of the Minimum Cost Subgraph Multicut Prob-
lem is linear in the coefficients of x and y:

Definition 1 With respect to an undirected graph G = (V,E), c ∈ RV and
d ∈ RE , the 01-linear program written below is called an instance of the
Minimum Cost Subgraph Multicut Problem.

min
x∈{0,1}V
y∈{0,1}E

∑
v∈V

cvxv + ∑
e∈E

deye (1)

subject to ∀e ∈ E ∀v ∈ e : ye ≤ xv (2)

∀C ∈ cycles(G) ∀e ∈C : (1− ye)≤ ∑
e′∈C\{e}

(1− ye′) (3)

Here, the constraints (2) state that an edge can only be selected if both its
nodes are selected. The cycle constraints (3) state, firstly, that every compo-
nent of the selected subgraph G′ is also a component of G and, secondly, that
every edge of G whose nodes are in the same component of G′ is also in G.
In the context of multi-target tracking this implies that if a detection hypoth-
esis is connected (spatially or temporally) to another detection hypothesis,
all neighbors of the first hypothesis have to be connected to all spatial and
temporal neighbors of the second hypothesis as well.

We solve instances of the Subgraph Multicut problem exactly by Integer
Linear Programming (ILP), using Branch-and-Cut, as well as heuristically,
by fixed points of the Kernighan Lin Algorithm.

Experiments We evaluate the performance of the proposed Subgraph Mul-
ticut model on three publicly available sequences: TUD-Campus, TUD-
Crossing and ParkingLot. We perform extensive experiments and analysis
on the TUD-Crossing sequence and present quantitative, superior results
compared to other competitive methods on all three sequences.
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