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Introduction and Motivation: Human actions [2] and interactions are in-
herently structured patterns of body movements. A single structured model,
such as those explored in [1, 3, 4], is insufficient to represent an action cate-
gory in all but the simplest scenarios. Foremost, the execution of the action
may differ from subject to subject; furthermore, the video capture process
introduces intra-class variations due to occlusions and/or variations in cam-
era viewpoint. As a consequence, the resulting space-time and appearance
variations necessitate using a collection of spatio-temporal structures that
can best represent the action at large.

We propose a method that discovers a collection of hierarchical space-
time trees from video training data and subsequently learns a discriminative
action model that builds on these discovered trees to recognize and spa-
tially localize actions in videos. Both the model parameters and the topol-
ogy of the tree structures are learned automatically from training data. The
only supervision that is needed for learning is the action labels of the train-
ing videos, i.e., bounding box annotations on video frames are unnecessary.
Fig. 1 illustrates one simple discovered tree and its best match in a test video.

Formulation: A video is represented as a graph G = {V, At , As, Ah, F}.
V is the set of vertices that are the space-time sub-volumes of the video.
At , As and Ah are the time, space and hierarchical adjacency matrices con-
taining edge labels. The rows of matrix are visual features extracted from
the vertices. For each action class a, a collection of trees is then used in
constructing an ensemble classifier:

Sa(G,T ) = wT ·Φ(G,T ) = ∑
m∈{1,...,|T |}

wmφm(G,Tm), (1)

where G denotes a test input video, T is the set of learned tree structures for
class a and Tm is one of such trees in this set, and w= {wm;m∈ {1, ..., |T |}}
is the learned weight vector. Each φm is a scoring function that measures
compatibility (or degree of presence) of Tm in video G. In the multi-class
classification setting, the predicted action class a∗ of G is computed by a∗ =
argmaxa Sa(G,T ).

We formalize a tree as Tm = {N, Et , Es, Eh, β}where N, {Et ,Es,Eh}
are the nodes and adjacency matrices respectively. β are discriminative
weights associated with the nodes and edges. Each node ni ∈ N is an in-
dex into a learned discriminative action word vocabulary Wa for class a;
each edge Ek

i j (k ∈ {t,s,h}) is associated with a corresponding temporal,
spatial or hierarchical relationship between nodes i and j, similar to the re-
lations defined for Ak in graph G. The matching score of a tree to a graph is
computed as follows:

φm(G, Tm) = ψ ({ β ·ϕ(G,Tm,z) | z ∈ Z(G,Tm)}) , (2)

where z is latent variable that represents a match of a tree Tm to the video G:
z is realized as z = (z1, ...,z|N|) where zi is the index of the vertex in G that
is matched to the ith node in Tm. ψ is a pooling function over the matching
scores of the set of all possible (partial) matches Z(G,Tm).

The matching score of a specific match z to Tm is:

β ·ϕ(G,Tm,z) = ∑
ni∈N

βi pn(zi, ni) (3)

+ ∑
k∈{t,s,h}

∑
Ek

i j∈Ek

Ek
i j 6=0

β
k
i j pk(A

k
ziz j
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where βi and β k
i j (k ∈ {t,s,h}) are the tree node weights and edge weights

respectively. The function pn scores compatibility of the tree nodes with
graph vertices; pt , ps and ph score compatibility of the temporal, spatial
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Figure 1: An example tree structure discovered by our approach (left) for the
lifting action and its best match (right) in a test video. In the tree, one node
(red) indexes to a root action word and is matched to a space-time segment
(STS) of the upward movement of the whole body; three nodes (blue) index
to the part action words and are matched to STSs of the upper-body and two
temporally consecutive movements of the left arm and forearm respectively.

and hierarchical graph edges with tree edges. Partial matching is possible
by adding a null vertex v∅ to V as the 0th vertex and also adding a 0th row
and column of zeros to As, At and Ah. Any node in Tm not matched to a
vertex in G is assigned to match the 0th vertex. If max pooling is selected
for ψ , i.e., only the best partial match is considered, inference can be done
efficiently via dynamic programming.

Discovering the Tree Structures T : Given a tree structure, parameters
can be learned in variety of ways, e.g., using latent SVM [4]. However,
discovering the tree structures themselves is the key challenge as: (1) the
space of tree structures is exponential in the number of tree nodes and types
of relationships allowed among the tree nodes; (2) partial presence of the
trees needs to be considered; (3) without annotation of body parts, the tree
nodes themselves are to be discovered. We first mine frequent subtrees from
graphs of training videos using a graph mining technique. Redundant struc-
tures are subsequently suppressed by clustering the trees in a way that con-
siders both their structure similarity and discriminative parameters (i.e., β ).
For the remaining trees, we compute their activation entropy, which is small
if the tree appears in few actions. A compact set of tree structures is then
selected that have low activation entropy values.

Performance: Our proposed method achieves state-of-the-art performance
in recognizing and localizing human actions and interactions in two bench-
mark video datasets: UCF-Sports and HighFive. We also show general-
ization of the learned trees by cross-dataset validation, achieving promising
results on Hollywood3D dataset using trees learned on the HighFive dataset.
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