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Abstract

In this paper, we propose a novel unsupervised feature
selection method: Simultaneous Orthogonal basis Cluster-
ing Feature Selection (SOCFS). To perform feature selec-
tion on unlabeled data effectively, a regularized regression-
based formulation with a new type of target matrix is de-
signed. The target matrix captures latent cluster centers of
the projected data points by performing orthogonal basis
clustering, and then guides the projection matrix to select
discriminative features. Unlike the recent unsupervised fea-
ture selection methods, SOCFS does not explicitly use the
pre-computed local structure information for data points
represented as additional terms of their objective functions,
but directly computes latent cluster information by the tar-
get matrix conducting orthogonal basis clustering in a sin-
gle unified term of the proposed objective function. It turns
out that the proposed objective function can be minimized
by a simple optimization algorithm. Experimental results
demonstrate the effectiveness of SOCFS achieving the state-
of-the-art results with diverse real world datasets.

1. Introduction
In recent years, high-dimensional features have been

widely used as inputs of several learning tasks. However, if
one uses these high-dimensional features directly, unimpor-
tant features to learning tasks lead to heavy computational
complexity and critical degradation of the performance of
the learning tasks. Most high-dimensional features contain
unimportant features that are largely categorized as 1) re-
dundant features correlated to others or 2) noisy features.

To deal with this problem, it is natural to filter out those
unimportant features from the original features. Typically
two kind of methods (feature extraction and feature selec-
tion) have been developed. Unlike feature selection meth-
ods, feature extraction methods such as principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA)
change the feature space to construct renewed features, so
the values of each feature change. Therefore, feature selec-
tion has an advantage to select discriminative features while
preserving their values.

A number of feature selection methods have been pro-
posed and classified as supervised and unsupervised fea-
ture selection methods. Supervised feature selection meth-
ods such as [6, 15, 24, 32, 21, 20] improve results of the
learning tasks by exploiting label information. However,
label information is usually expensive in practice, so un-
supervised feature selection is of more practical impor-
tance. Many unsupervised feature selection methods such
as [13, 32, 21, 3, 30, 18, 23, 28] have been proposed to
deal with the unlabeled data. One type of approaches select
features corresponding to the criterions that are used in the
feature extraction methods. The simplest method so called
max variance is to select features by data variance criterion.
Later works [21, 28] apply trace ratio LDA criterion to their
formulations for feature selection.

Another type of approaches select features by making
use of local structure information of data points. Early
works [13, 32] empirically show that local structure in-
formation is quite helpful for feature selection. They first
construct nearest neighbor graph of data points to involve
local structure information and then feature selection step
follows. Later works [3, 30, 18, 23] also incorporate pre-
computed local structure information and conduct feature
selection. Recent works [18, 23] select features based on
regularized regression with pseudo-label indicators by non-
linear local structure learning methods such as [1, 11].

In this paper, we propose an unsupervised feature se-
lection method so called Simultaneous Orthogonal basis
Clustering Feature Selection (SOCFS). SOCFS does not ex-
plicitly adopt pre-computed local structure information, but
concentrates on the latent cluster information. To this end, a
novel target matrix in the regularized regression-based for-
mulation of SOCFS is also proposed to conduct orthogo-
nal basis clustering directly on the projected data points to
estimate latent cluster centers. Since the target matrix is
put in a single unified term for regression of the proposed
objective function, feature selection and clustering are si-
multaneously performed. In this way, the projection matrix
for feature selection is more properly computed by the es-
timated latent cluster centers of the projected data points.
To the best of our knowledge, this formulation is the first



attempt to consider feature selection and clustering together
in a single unified term of the objective function. The pro-
posed objective function has fewer parameters to tune and
does not require complicated optimization tools so just a
simple optimization algorithm is sufficient. Substantial ex-
periments are performed on several publicly available real
world datasets, which shows that SOCFS outperforms var-
ious unsupervised feature selection methods and that latent
cluster information by the target matrix is effective for reg-
ularized regression-based feature selection.

2. Preliminary Notations

For a given matrix W, wi and wj denote i-th row and j-
th column of W, respectively, and Wij denotes the (i, j)-th
element of W.

For p > 0, the lp-norm of the vector b ∈ Rn is de-
fined as ‖b‖p = (

∑n
i=1 |bi|p)

1
p , and the l0-norm of the

vector b (‖b‖0) is defined as the number of non-zero el-
ements in b. The lp,q-norm of matrix W ∈ Rn×m is de-
fined as ‖W‖p,q = (

∑n
i=1 ‖wi‖qp)

1
q , where p > 0, q >

0. The Frobenius norm of the matrix W is defined as
‖W‖F = ‖W‖2,2. The l2,0-norm of the matrix is defined
as ‖W‖2,0 =

∑n
i=1 ‖‖wi‖2‖0.

|W| denotes a matrix whose elements are the absolute
values of the corresponding elements of W. W ≥ 0 de-
notes that all elements of W are larger than or equal to 0.

3. Problem Formulation

Given training data, let X = [x1, . . . ,xn] ∈ Rd×n de-
note the data matrix with n instances where dimension is d
and T = [t1, . . . , tn] ∈ Rm×n denote the corresponding
target matrix where dimension is m. We start from the reg-
ularized regression-based formulation to select maximum r
features as follows:

min
W
‖WTX−T‖2F s.t. ‖W‖2,0 ≤ r. (1)

Such regularized regression-based feature selection meth-
ods have proved to be effective to handle multi-label data
in both a supervised and an unsupervised fashion [20, 12,
3, 18, 23]. To exploit such formulation on unlabeled data
more effectively, it is crucial for the target matrix T to have
discriminative destinations for projected clusters.

We now propose a new type of target matrix T that con-
ducts clustering directly on the projected data points WTX.
To this end, we allow extra degrees of freedom to T by
decomposing it into two other matrices B ∈ Rm×c and
E ∈ Rn×c as T = BET with additional constraints as

min
W,B,E

‖WTX−BET ‖2F + λ‖W‖2,1

s.t. BTB = I, ETE = I, E ≥ 0,
(2)
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Figure 1. Schematic illustration of the proposed method. First row
illustrates the projection step that maps the data points to the target
matrix. Second row illustrates the orthogonal basis clustering step
to discriminate latent cluster centers of the projected data points.
These two steps are simultaneously conducted to select discrimi-
native features without label information.

where λ > 0 is a weighting parameter for the relaxed reg-
ularizer ‖W‖2,1 that induces row sparsity of the projection
matrix W. If i-th feature is less correlated to the target ma-
trix T, all elements of the row wi shrinks to zero. Thus, we
can perform feature selection from W by excluding features
corresponding to the zero rows of W.

The meanings of the constraints BTB = I,ETE =
I,E ≥ 0 are as follows: 1) the orthogonal constraint of
B lets each column of B be independent; 2) the orthogonal
and the nonnegative constraint of E make each row of E
has only one non-zero element [4]. From 1) and 2), we can
clearly interpret B as the basis matrix, which has orthog-
onality and E as the encoding matrix, where the non-zero
element of each column of ET selects one column in B.

While optimizing problem (2), T = BET acts like clus-
tering of projected data points WTX with orthogonal basis
B and encoder E, so T can estimate latent cluster centers of
the WTX. Then, W successively projects X close to cor-
responding latent cluster centers, which are estimated by T.
Note that the orthogonal constraint of B makes each pro-
jected cluster in WTX be separated (independent of each
other), and it helps W to be a better projection matrix for
selecting more discriminative features. If the clustering is
directly performed on X not on WTX, the orthogonal con-
straint of B extremely restricts the degree of freedom of B.
However, since features are selected by W and the cluster-
ing is carried out on WTX in our formulation, so the or-



thogonal constraint of B is highly reasonable. A schematic
illustration of the proposed method is shown in Figure 1.

4. Optimization

4.1. Problem Reformulation

Previous methods [5, 31, 17] can solve problem (2) w.r.t
E by approximating the orthogonal constraint. However,
because such methods are based on nonnegative matrix fac-
torization (NMF) [16], they focus more on handling the
nonnegative constraint than on the orthogonal constraint.
Since they cannot fully guarantee E an orthogonal matrix
as also mentioned in their papers, so E cannot play a role as
encoding matrix. Alternatively, we propose an equivalent
formulation of problem (2) as follows:

min
W,B,E,F

‖WTX−BET ‖2F + λ‖W‖2,1

s.t. BTB = I, ETE = I, F = E, F ≥ 0,
(3)

where F is an auxiliary variable with an additional con-
straint of F = E. This reformulation step has a goal to
detach the nonnegative constraint from E and assign the
constraint to a new variable F. F has a role to induce non-
negativity to E while E keeps orthogonality through the ad-
ditional constraint F = E. By rewriting problem (3), we
finally propose our objective function of SOCFS as follows:

min
W,B,E,F

‖WTX−BET ‖2F + λ‖W‖2,1 + γ‖F−E‖2F

s.t. BTB = I, ETE = I, F ≥ 0, (4)

where γ > 0 is another parameter to control the degree of
equivalence between F and E.

This formulation has two advantages. First, each vari-
able in problem (4) has a single constraint and the objective
function is convex in each single variable when the other
variables are fixed, so it allows a simple iterative optimiza-
tion algorithm as in the following subsection. Second, since
each single constraint on E and B will be directly used in
the optimization algorithm, E as well as B has orthogonal-
ity during the optimization steps. Usually, the orthogonality
of E is more important than the nonnegativity of E to assure
E as an encoding matrix, so this formulation gives another
advantage for the performance of the clustering.

4.2. An Iterative Algorithm

W update: W is minimized while fixing B, E, and F.
The subproblem that only relates to W is

min
W
‖WTX−BET ‖2F + λ‖W‖2,1. (5)

Similar to [20], setting the derivative of J(W,B,E,F)

w.r.t W to zero, we have

∂J

∂W
= 2XXTW − 2XEBT + 2λDW = 0

=⇒ W = (XXT + λD)−1XEBT , (6)

where D is a diagonal matrix with diagonal elementsDii =
1

2‖wi‖2 . Note that the derivative of ‖W‖2,1 w.r.t W is com-
puted to 2DW.

B update: B is minimized while fixing E, W, and F.
The subproblem that only relates to B is

min
B
‖EBT −XTW‖2F s.t. BTB = I. (7)

Proposition 1. Suppose we have two matrices P ∈ Rn×m

and Q ∈ Rn×d. The optimization problem

min
T̃
‖PT̃−Q‖2F s.t. T̃T̃T = I (8)

has an analytic solution

T̃ = UIm,dV
T , (9)

where U ∈ Rm×m and V ∈ Rd×d are left and right eigen-
vectors of PTQ computed by SVD, respectively.

Proof. A proof can be done as in [27]. Note that a differ-
ence between the problem in Proposition 1 and Orthogonal
Procrustes Problem (OPP) [26, 22, 9] is the constraint.

The solution is obtained by Proposition 1 with P = E, T̃ =
BT , and Q = XTW as

B = VBIm,cUB
T , (10)

where UB and VB are the left and right eigenvectors of
ETXTW computed by SVD, respectively.

E,F update: E and F are minimized while fixing B and
W. E and F are successively updated in another iteration
fixing each other. The subproblem that only relates to E is

min
E
‖BET −WTX‖2F + γ‖E− F‖2F

s.t. ETE = I.
(11)

The subproblem (11) is rewritten as

argmin
E:ETE=I

tr(EBTBET − 2XTWBET + XTWWTX)

+ γ tr(ETE− 2ETF + FTF)

= argmin
E:ETE=I

− tr((XTWB + γF)ET )

= argmin
E:ETE=I

‖E− (XTWB + γF)‖2F . (12)

Then the solution of this subproblem is obtained by Propo-
sition 1 with P = I, T̃ = ET , and Q = BTWTX + γFT

as



Algorithm 1: E, F update algorithm
Input: Ft, Wt and Bt; Parameter: γ
Initialization: s = 0 and F′s = Ft

1 repeat
2 Update E′s+1 = VEIn,cUE

T by (13) where
BTWT

t Xt + γF′
T
s = UEΣEVE

T ;

3 Update F′s+1 =
E′

s+1+|E
′
s+1|

2 by (15);
4 s = s+ 1;
5 until ‖4J (t)

EF (E
′
s,F

′
s)‖ ≤ ε or s ≥ S;

Output: Et+1 = E′s, Ft+1 = F′s

E = VEIn,cUE
T , (13)

where UE and VE are the left and right eigenvectors of
BTWTX+γFT computed by SVD, respectively. The sub-
problem that only relates to F is

min
F
‖F−E‖2F s.t. F ≥ 0. (14)

The solution of the subproblem is easily obtained as

F =
1

2
(E + |E|). (15)

We summarize the E and F update rules of the proposed
optimization algorithm in Algorithm 1. The overall pro-
posed optimization algorithm is also presented in Algorithm
2. Following update rules (6), (10), (13), and (15), the ob-
jective function monotonically decreases.

4.3. Convergence Analysis

We put the convergence analysis of the proposed opti-
mization algorithm of SOCFS with all update rules in the
supplementary material. It is found that SOCFS converges
within 100 iterations. We use a single convergence criterion
in terms of the number of iterations by setting a maximum
iteration value for all experiments in this paper.

Table 1. Dataset Description
# of Classes # of Instances # of Features

LUNG 5 203 3312
COIL20 20 1440 1024
Isolet1 26 1560 617
USPS 10 9258 256
YaleB 38 2414 1024

UMIST 20 575 644
AT&T 40 400 644

5. Experiments
In this section, we evaluate the performance of the pro-

posed method SOCFS. We follow the same experimental
setups of the previous works [13, 3, 30, 18, 23].

Algorithm 2: SOCFS

Input: Data matrix X ∈ Rd×n; Parameters: λ, γ
Initialization: t = 0, Dt = I and Bt,Et

1 repeat
2 Update Et+1 and Ft+1 by Algorithm 1;
3 Update Wt+1 = (XXT + λDt)

−1XEt+1B
T
t by

(6);
4 Update Bt+1 = VBIm,cUB

T by (10) where
ET

t+1X
TWt+1 = UBΣBVB

T ;
5 Update the i-th diagonal elements of the diagonal

matrix Dt+1 with 1
2‖wi

t+1‖2
;

6 t = t+ 1;
7 until ‖4J(Wt,Bt,Et,Ft)‖ ≤ ε or t ≥ T ;

Output: Features are selected corresponding to the
largest values of ‖wi

t‖, i = 1 . . . d, which are
sorted by descending order.

5.1. Experimental Setup

The experiments were conducted on seven publicly
available datasets. These datasets include one cancer
dataset (LUNG1 [2]), one object image dataset (COIL202

[19]), one spoken letter recognition dataset (Isolet12 [7]),
one handwritten digit dataset (USPS2 [14]), and three face
image datasets (YaleB2 [8], UMIST3 [10], and AT&T4

[25]). Detailed information of the datasets is summarized
in Table 1. On each dataset, SOCFS is compared to the fol-
lowing six unsupervised feature selection methods and all
features case:

• Max Variance (MV) selects features corresponding to
the largest variances.

• Laplacian Score (LS)5 [13] selects features corre-
sponding to the largest laplacian scores that are com-
puted to reflect the locality preserving power.

• Multi-Cluster Feature Selection (MCFS)5 [3] selects
features by a two-step method of spectral regression
with a l1 regularizer.

• Unsupervised Discriminative Feature Selection
(UDFS)6 [30] selects features from local discrimina-
tive score that reflects local structure information with
a l2,1 regularizer.

• Nonnegative Discriminative Feature Selection
(NDFS)6 [18] selects features by a joint framework
of nonnegative spectral analysis and l2,1 regularized
regression.

1https://sites.google.com/site/feipingnie/publications
2http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
3http://www.sheffield.ac.uk/eee/research/iel/research/face
4http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
5http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html
6http://www.cs.cmu.edu/ yiyang/Publications.html



• Robust Unsupervised Feature Selection (RUFS)7

[23] selects features by a joint framework of l2,1
norm-based nonnegative matrix factorization with lo-
cal learning and l2,1 regularized regression.

According to the experimental setups in the previous works,
clustering accuracy (ACC) and normalized mutual informa-
tion (NMI) [29] are measured to evaluate the clustering re-
sults of each feature set selected from various methods. For
LS, MCFS, UDFS, NDFS, and RUFS, we fix the number
of neighboring parameter k = 5, following the previous
works. Since SOCFS does not consider the local structure
information of data points, we do not need to set any neigh-
boring parameters for SOCFS. We set the dimension of pro-
jected space m as the number of latent clusters c.

To fairly compare several unsupervised feature selec-
tion methods, we tune all parameters for each method
by a grid-search strategy from {10−6, 10−4, . . . , 104, 106}.
The number of selected features are set as {50, 100,
150, . . . , 300} for the first six datasets. For USPS dataset,
we set the number of features as {50, 80, 110, . . . , 200} due
to the total number of features. Clustering experiments are
conducted on each selected feature set from several datasets
and methods by K-means. To report the best clustering re-
sults of each method, different parameters can be used for
several datasets and methods. Since the results of K-means
depend on initialization of clustering seeds, we repeat the
experiments 20 times with random initialization of seeds
over all experiments and the mean and standard deviation
of the measures ACC and NMI are reported. We also repeat
the experiments 20 times for random initialization of vari-
ables of the methods such as NDFS, RUFS and SOCFS. We
can clearly notice that the methods of better performance
will have larger mean and smaller standard deviation val-
ues of the measures ACC and NMI of the clustering results.
The reliability of the performance of the methods in practi-
cal unlabeled data can be also verified by this experimental
setup. All the results in the figures and the tables are pro-
duced by their published source codes.

5.2. Experimental Results and Analysis

The experimental results are shown in Figures 2-3, and
Tables 2-3. We notice that feature selection can effectively
improve the clustering results for all datasets while reducing
the redundant features. Thus, it is desirable to use selected
features for learning tasks.

We evaluate the clustering results of selected features
versus number of selected features in Figures 2-3. We no-
tice that, even with a small number of features particularly
less than 100 features, SOCFS selects the most discrimina-
tive features among the seven methods. It is also shown in
Tables 2-3 that SOCFS has the best clustering results for all

7https://sites.google.com/site/qianmingjie/home/publications

datasets, which indicates SOCFS selects the most discrimi-
native features under multi-label condition.

We have the following further observations from the fig-
ures and the tables. First, the methods MCFS, UDFS,
NDFS, RUFS, and SOCFS, which select features simulta-
neously achieve better results than the others that select fea-
tures one by one. Since the projection matrices of those
methods are determined at the same time during iterations,
corresponding features are selected to prevent high correla-
tion. Second, regularized regression-based methods MCFS,
NDFS, RUFS, and SOCFS, show relatively better results.
For MCFS, NDFS, and RUFS, nonlinear local structure
learning methods are used, which can help regression fit
data more accurately. Although SOCFS does not use lo-
cal structure information explicitly, SOCFS estimates latent
cluster centers by orthogonal basis clustering of the target
matrix, so regression can show better clustering results.

5.3. Sensitiveness of Parameters

To study the sensitiveness of parameters, clustering re-
sults under varying parameters and the number of selected
features are measured. Since we cannot tune the parame-
ters according to the measures ACC and NMI w.r.t ground-
truth labels on practical unlabeled data, the sensitiveness of
parameters is a critical issue. Figures 4-5 tell us that the
clustering results of SOCFS are 1) not highly sensitive to λ
and γ within wide ranges and 2) slightly more sensitive to
λ than to γ. This is because λ controls the sparsity of W
and the proper value of λ is data dependent. Since γ is a
relatively insensitive parameter, it takes less time to tune γ.

Therefore, SOCFS is not affected too much by varying
the values of the parameters and this means that most λ and
γ values can show satisfactory performances. In particular,
we found that almost equally prominent performances are
obtained by setting λ from 1 to 100. Furthermore, we can
fix γ = λ to simplify the tuning process for efficiency in
practice. This is empirically proved in the experiments and
also shown in Figures 4-5.

5.4. Discussions

We suggest discussions about the advantages of SOCFS
compared to the most recent works RUFS and NDFS.
SOCFS is different in the following respects. First, SOCFS
has fewer parameters to tune than NDFS and RUFS have.
Furthermore, by setting γ = λ SOCFS has only one pa-
rameter λ yet yields better performance, so SOCFS is more
appropriate in practical use. Second, SOCFS has a mixed-
sign target matrix, which is suitable for the practical mixed-
sign data compared to nonnegative target matrices (pseudo-
label indicators) of NDFS and RUFS. With those methods,
if mixed-sign data is provided, the projected data points
should be adjusted to a nonnegative region, so this reduces
the possibility of accurate projection and selected features
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Figure 2. The clustering results ACC mean (%) of each selected feature set from various unsupervised feature selection methods versus #
of selected features. SOCFS selects the most discriminative features even with a small number of features.
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Figure 3. The clustering results NMI mean (%) of each selected feature set from various unsupervised feature selection methods versus #
of selected features. SOCFS selects the most discriminative features even with a small number of features.

are less discriminative. This indicates that the nonnega-
tive constraint of the target matrix is too strict to cover
the mixed-sign data. But SOCFS has a mixed-sign tar-
get matrix for the purpose of estimating latent cluster cen-
ters, so it has more flexibility. Third, since both NDFS and
RUFS also take advantage of nonnegative matrix factoriza-
tion (NMF) formulation, their approximation of the orthog-
onal constraint (‖FTF− I‖2F ) cannot guarantee the full or-
thogonality, so their target matrices cannot act as label indi-
cator matrices as we mentioned above. But SOCFS always

guarantees the orthogonality of the encoding matrix E by
the constraint, so the target matrix T effectively determines
the latent cluster centers of the projected data points.

6. Conclusion

We have proposed a new unsupervised feature selection
method with simultaneous feature selection and clustering
combined in a single term of the objective function. In the
objective function of this new formulation, a novel type of



Table 2. ACC (% ± std) of various unsupervised feature selection methods on several datasets. The best results are in boldface.
LUNG AT&T YaleB UMIST COIL20 Isolet1 USPS

All Features 70.0 ± 8.9 60.9 ± 3.4 9.6 ± 0.6 42.1 ± 2.3 59.4 ± 4.9 57.9 ± 3.6 65.7 ± 2.4
MV 66.4 ± 8.9 61.1 ± 3.4 9.1 ± 0 4 46.7 ± 2.8 56.7 ± 4.6 58.5 ± 3.3 65.3 ± 4.4

LS [13] 60.1 ± 9.5 61.3 ± 3.5 8.8 ± 0.4 45.1 ± 3.4 56.3 ± 4.8 55.6 ± 3.3 62.5 ± 4.4
MCFS [3] 64.3 ± 7.9 61.2 ± 3.7 9.8 ± 0.7 45.1 ± 3.2 58.7 ± 5.3 60.7 ± 4.0 65.2 ± 4.2
UDFS [30] 66.2 ± 7.8 61.7 ± 3.8 11.5 ± 0.7 44.9 ± 2.7 58.9 ± 5.1 57.9 ± 3.0 62.4 ± 3.1
NDFS [18] 66.9 ± 9.1 61.4 ± 3.5 11.8 ± 0.6 47.8 ± 3.1 59.2 ± 5.0 64.6 ± 4.4 64.9 ± 3.1
RUFS [23] 68.4 ± 8.3 61.6 ± 3.2 14.5 ± 0.9 46.4 ± 3.0 59.9 ± 4.9 62.8 ± 3.8 65.8 ± 3.1

SOCFS 74.0 ± 8.9 62.7 ± 3.1 15.3 ± 0.7 49.4 ± 3.2 60.4 ± 4.7 64.9 ± 4.4 66.1 ± 2.0

Table 3. NMI (% ± std) of various unsupervised feature selection methods on several datasets. The best results are in boldface.
LUNG AT&T YaleB UMIST COIL20 Isolet1 USPS

All Features 51.7 ± 5.4 80.5 ± 1.8 13.0 ± 0.8 63.7 ± 2.5 74.2 ± 2.4 74.2 ± 1.7 60.9 ± 0.8
MV 49.0 ± 5.3 80.2 ± 1.7 12.8 ± 0.5 64.4 ± 2.2 69.8 ± 2.1 74.2 ± 1.4 60.8 ± 1.8

LS [13] 42.9 ± 5.0 80.4 ± 1.8 13.7 ± 0.4 65.1 ± 1.9 70.1 ± 2.3 71.7 ± 1.4 59.5 ± 2.1
MCFS [3] 45.6 ± 4.5 80.2 ± 1.8 14.2 ± 1.0 67.3 ± 2.6 73.7 ± 2.5 74.4 ± 1.9 61.2 ± 1.8
UDFS [30] 49.6 ± 5.1 80.6 ± 1.8 17.9 ± 0.9 64.4 ± 1.4 73.2 ± 2.5 73.6 ± 1.6 56.8 ± 1.4
NDFS [18] 48.3 ± 5.2 80.3 ± 1.8 18.8 ± 0.7 65.1 ± 2.0 73.7 ± 2.1 77.7 ± 2.0 60.7 ± 1.3
RUFS [23] 49.1 ± 5.1 80.9 ± 1.7 23.1 ± 0.7 64.5 ± 2.2 73.8 ± 2.4 76.8 ± 1.9 61.5 ± 1.4

SOCFS 55.7 ± 6.2 81.1 ± 1.6 25.1 ± 0.8 67.9 ± 2.1 74.8 ± 2.3 78.3 ± 1.9 61.6 ± 0.8

target matrix has also been proposed to serve as a latent
cluster centers by performing orthogonal basis clustering on
the projected data points. The orthogonal basis clustering
gives latent projected cluster information to yield more ac-
curate selection of discriminative features. The formulation
has been turned out to be minimized by proposed simple op-
timization without other complex optimization algorithms.
The effectiveness of the proposed method based on the for-
mulation has carefully proved by the extensive experiments
on several real world datasets.
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(d) Isolet1
Figure 4. ACC and NMI mean (%) of SOCFS with different γ and number of selected features while keeping λ = 102.
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Figure 5. ACC and NMI mean (%) of SOCFS with different λ and number of selected features while keeping γ = 10−2.

[19] S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image
library (coil-20). Technical report, CUCS-005-96, 1996. 4

[20] F. Nie, H. Huang, X. Cai, and C. H. Ding. Efficient and robust feature
selection via joint l2,1-norms minimization. In NIPS, pages 1813–
1821, 2010. 1, 2, 3

[21] F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan. Trace ratio criterion
for feature selection. In AAAI, pages 671–676, 2008. 1

[22] H. Park. A parallel algorithm for the unbalanced orthogonal pro-
crustes problem. Parallel Computing, 17(8):913–923, 1991. 3

[23] M. Qian and C. Zhai. Robust unsupervised feature selection. In
IJCAI, pages 1621–1627, 2013. 1, 2, 4, 5, 7

[24] L. E. Raileanu and K. Stoffel. Theoretical comparison between the
gini index and information gain criteria. Annals of Mathematics and
Artificial Intelligence, 41(1):77–93, 2004. 1

[25] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic
model for human face identification. In IEEE Workshop on Appli-
cations of Computer Vision, pages 138–142, 1994. 4

[26] P. H. Schönemann. A generalized solution of the orthogonal pro-
crustes problem. Psychometrika, 31(1):1–10, 1966. 3

[27] T. Viklands. Algorithms for the weighted orthogonal Procrustes
problem and other least squares problems. PhD thesis, Umeå Uni-
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