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Blur most often occurs on out of focus objects or due to camera motion.
While these kinds of blur can be prevented by adequate photography skills,
there is a permanent intrinsic blur caused by the optics of image formation
e.g. lens aberration and light diffraction. Image deconvolution can reduce
this intrinsic blur if the lens PSF is precisely known. There is a requirement
to measure the blur function by analyzing the captured images. Such a PSF
estimation is an ill-posed problem that can be approached by blind and non-
blind methods. This problem is even more challenging for mobile devices
since they have very small sensor area that typically creates a large amount
of noise.

In this paper, we introduce a method motivated by non-blind techniques
(e.g. [2, 3]) to measure the intrinsic camera blur. We build a reliable hard-
ware setup that unlike existing non-blind techniques omits homography and
radial distortion estimation for the camera-scene alignment. Hence, poten-
tial errors of the geometric alignment between the captured pattern and the
original one are greatly reduced. This setup also provides pixel to pixel in-
tensity correspondence between the captured pattern and the sharp pattern.
Hence, there is no need for tone curve estimation or complicated radiomet-
ric correction between the two images. We use Bernoulli (0.5) noise pat-
terns to estimate the PSF. Unlike the method proposed in [1], we introduce
a non-negativity constraint and take into account the frequency and energy
specifications of the Bernoulli noise pattern directly in the functional of the
PSF estimation. Also, the proposed alignment allows us to utilize multiple
PSF estimation targets (i.e. Bernoulli noise patterns) in the PSF estimation
function to significantly reduce the effect of noise. As a result of our main
contributions i.e. simplified and accurate alignment, employing spectral in-
formation of the kernel as a prior, and using multiple targets, we achieve
an accurate PSF estimation which is greatly robust against noise. This be-
comes an appropriate scheme to measure lens blur of mobile devices that
suffer from a large amount of noise caused by their small sensors.

Denoting the sharp correspondence of the observed image b by u, the
imaging can be modeled as:

b==S(uxk)+n. 1)
where k is a PSF that represents lens aberrations, S is the sensor’s sampling
function, and n denotes additive Gaussian noise. The sharp image can be
generated by a function of perspective projection £, radial distortion d, and

vignetting v; u = v(d (h(z))) Our approach to measure lens blur includes

two main steps; camera-scene alignment, and PSF estimation.

We use four different patterns in the alignment step; a 0.5 expectation
Bernoulli noise pattern as the scene pattern, a checkerboard with a large
number of checker patterns as the calibration guide, and a black and a white
image as intensity references. A high resolution screen is used to display
these patterns sequentially so that no relative motion between them and be-
tween the camera and the scene is induced during the imaging. The corners
found in the picture of the checkerboard are used to find the correspondence
between the camera grid and the scene. These points are used in a bilinear
interpolation scheme to transform the synthetic noise pattern into the camera
grid space. Next, the pictures of the black and the white images are used to
adjust the intensity of the transformed synthetic noise pattern. The resulting
warped and color adjusted sharp noise pattern u is then employed in our PSF
estimation procedure.

Considering model (1), the lens PSF £ is estimated by generating a lin-
ear system to solve a least squares problem with smoothness and sparsity
constraints for the kernel. In addition, since the spectrum of the Bernoulli
pattern is uniform and contains all frequency components, we employ its
spectral density function (SDF) to derive a prior for the PSF. The Bernoulli
noise pattern has a homogeneous SDF i.e. |F(i)|? where F(.) denotes the
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Figure 1: (a) Our PSF estimation result for Blackberry mobile phone cam-
era. (b) Image captured using Blackberry mobile phone camera. (c) En-
hanced image using our measured PSFs (a) and deconvolution.

Fourier transform. Hence, in an ideal noise-free image acquisition, the SDF
of the captured image b is |F(i)|?|F(k)|?. Therefore, the SDF of the ideal
blur kernel k is expected to be

. F(b)F(b
Fp = 2L, ®
F () F (u)
We propose to solve the following function to estimate the PSF:
minimize E (k) =| ik — |+ A| ||| + u||VK|[?
3)

+AIF k)~ | F K, k>0

where the first term is the data fitting term, the second term is the kernel
sparsity, the third terms is the kernel smoothness constraints, and the last
term is the constraint of the SDF of the PSFE.

There is more flexibility to provide a large number of feature points in
the calibration pattern and to guide the alignment more precisely using a
high-resolution screen to display the patterns. Also, our proposed method
benefits from multiple Bernoulli patterns in generating the linear system and
solving Eq. (3). Fig. 1 demonstrate how the measured lens PSFs are used to
significantly enhance the quality of the images captured by the cameras. Our
experimental results show that our method is robust against noise, and there-
fore suitable for mobile devices. Our technique achieves better performance
than the existing non-blind PSF estimation approaches.
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