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This paper takes a step forward in image and video coding by extend-
ing the well-known Vector of Locally Aggregated Descriptors (VLAD) [5]
onto an extensive space of curved Riemannian manifolds. In particular, we
consider structured descriptors from visual data, namely Region Covariance
Descriptors (RCovD) and linear subspaces that reside on the manifold of
Symmetric Positive Definite (SPD) matrices and the Grassmannian mani-
folds, respectively. We introduce the Riemannian version of the conven-
tional VLAD, called R-VLAD, a new coding approach that enables fusing
local descriptors on these curved spaces.

The motivation stems from the fact that, in Rn, coding local image or
video descriptors using VLAD has been shown to be exceptionally success-
ful in addressing a variety of challenging problems with a negligible com-
putational cost compared to more involved approaches like deep convolu-
tional networks [3, 5]. On the other hand, structured representations such
as RCovDs and linear subspaces have been shown to provide robust and ef-
ficient representations for a wide range of tasks [1, 2, 4, 6]. Therefore, we
provide mathematical framework that helps us aggregate local descriptors
on curved spaces in a fashion similar to the conventional VLAD. In the se-
quel, we use Sd

++ to specify the space of d× d SPD matrices and G p
d to

denote the space of arbitrary d× p, 0 < p < d, matrices with orthogonal
columns, i.e., Grassmann manifold.

In VLAD [5], the input space Rd is partitioned into K Voroni cells by
means of a codebook C with centers {ci}K

i=1, ci ∈ Rd . For a query set
X = {xt}T

t=1,xt ∈ Rd extracted from an image or a video, the VLAD code
V ∈RKd is obtained by concatenating K Local Difference Vectors (LDV) vi
storing the differences ci− xt in each cell, i.e.,

vi = ∑
xt∈ci

ci− xt , (1)

where x ∈ ci means that the local descriptor x belongs to the Vornoi defined
by ci, i.e. the closest codeword to x is ci.

Now assume that X = {xt}T
t=1, xt ∈M and C = {ck}K

k=1, ck ∈M,
are a set of local descriptors and codewords on a Riemannian manifold M,
respectively. The R-VLAD descriptor on M is obtained once we have a
metric δ (x,y) :M×M→R+ to determine how the local descriptors should
be assigned to the codewords and operators to perform the role of vector
addition or subtraction on M. We formulate our R-VLAD descriptor to
support any metric on M. As for the second requirement, we utilize the
logarithm map, logc(·) : M→ TcM as it is related to the gradient of the
geodesic distance function δg : M×M→ R+ via the following equation:

∇cδ
2
g (c,x) =−2logc(x). (2)

However, here the difficulty raises when the chosen metric is not the
geodesic distance. As a result, choosing ∇ci δ

2(ci,xt) for LDV will not work
in practice. The main reason being that for δg, the norm of ∇cδ 2

g (c,x) is
related directly to the metric, i.e.,

‖∇cδ
2
g (c,x)‖2 = 4‖ logc(x)‖2 = 4δ

2
g (c,x).

As an example, Fig. 1 shows the behavior of ∇X δ 2(X ,Y ) by varying
δ 2(X ,Y ) for the projection metric on the Grassmann manifold G2

3 . Inter-
estingly, the norm of the gradient will start decreasing while point Y gets
farther away from X . This means, during encoding, a point which should
contribute significantly to the output, can act as an insignificant point, hence
deteriorating the discriminatory power of the descriptor.

Here, the important message is that for a new metric δ : M×M→
R+, the length of the LDV should represent the metric considered on M.
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Figure 1: Illustration of the squared norm of the gradients vs distance for the projection distance
on G2

3 .

Table 1: Metrics and associated gradients on the Grassmann and SPD manifold.

Manifold Metric δ 2(X ,Y ) ∇X δ 2

G p
d geodesic ‖Θ‖2 obtained numerically

G p
d projection 2p−2‖XT Y‖2

F −4
(
Id −XXT

)
YY T X

Sd
++ geodesic ‖ log(X−1/2Y X−1/2)‖2

F 2X1/2 log(X−1/2Y X−1/2)X1/2

Sd
++ Stein lndet

(
X+Y

2

)
− 1

2 lndet(XY ) X(X +Y )−1X− 1
2 X

Sd
++ Jeffrey 1

2 Tr(X−1Y )+ 1
2 Tr(Y−1X)−d 1

2 X
(
Y−1−X−1Y X−1

)
X

As such, we propose the following form of LDV for our general R-VLAD
descriptor.

vi = ∑
xt∈ci

δ (ci,xt)
∇ci δ

2(ci,xt)

‖∇ci δ
2(ci,xt)‖

. (3)

The gradients used in R-VLAD for the studied metrics are depicted in
Table 1.

Through rigorous experimental validation, we demonstrate the superi-
ority of this novel Riemannian VLAD descriptor on several visual classifi-
cation tasks including video-based face recognition, dynamic scene recog-
nition, and head pose classification. To this end, we assess and contrast the
performance of R-VLAD against Riemannian Bag of Words (BoW) model
using different metrics and their Log-Euclidean counterparts as well as the
state-of-the-art.
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