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We present a simple but powerful reinterpretation of kernelized locality-
sensitive hashing (KLSH) [2], a general and popular method developed in
the vision community for performing approximate nearest-neighbor searches
in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspec-
tive is based on viewing the steps of the KLSH algorithm in an appropriately
projected space, and has several key theoretical and practical benefits. This
new perspective gracefully resolves the “infinite Gaussian" issue and pro-
vides us with the first explicit performance bounds to clearly demonstrate
tradeoffs between runtime and retrieval accuracy. Crucially, this tradeoff
also reveals two potential techniques which boost the empirical performance
of vanilla KLSH. In particular, we show how to modify KLSH to obtain
improvements in recall performance of at least 12%, and sometimes much
higher, on all benchmarks examined.

Given a set of n database samples {xxx1, . . . ,xxxn} ∈ Rd , query qqq ∈ Rd and
a normalized kernel function κ(·, ·) = 〈Φ(·),Φ(·)〉 ∈ [0,1] with the feature
map Φ : Rd →H, where H is the RKHS, we are interested in finding the
most similar item in the database to the query qqq with respect to κ(·, ·), i.e.,
argmaxiκ(qqq,xxxi). Considering {Φ(xxx1), . . . ,Φ(xxxt)} as t realizations of ran-
dom variable Φ(X) with known mean µ and covariance operator C, the clas-
sical CLT ensures that the random vector C−1/2z̃t =C−1/2[

√
t( 1

t ∑
t
i=1 Φ(xxxi)−

µ)] converges to a standard Gaussian random vector as t → ∞. Therefore,
the LSH hash family can be approximated by [2]:

h(Φ(x)) =
{

1, if Φ(x)TC−1/2z̃zzt ≥ 0
0, otherwise

. (1)

Unfortunately, there is no such canonical Gaussian distribution in an
infinite-dimensional RKHS, as given by the following lemma.

Lemma 1. [3] A Gaussian distribution with covariance operator C in a
Hilbert space exists if and only if, in an appropriate base, C has a diago-
nal form with non-negative eigenvalues and the sum of these eigenvalues is
finite.

New Interpretation. Utilizing the eigen-decomposition of the covari-
ance C, we can write

g(Φ(xxx)) =
dΦ

∑
i=1

1√
λi
(vvvT

i Φ(xxx)) · (vvvT
i z̃zzt) =

dΦ

∑
i=1

(vvvT
i Φ(xxx)) ·

(
1√
λi

vvvT
i z̃zzt

)
, (2)

where h(Φ(xxx)) = sign[g(Φ(xxx))], λ1 ≥ ·· · ≥ λm ≥ ·· · ≥ 0 are the eigenval-
ues of C with vvvi the corresponding eigenvectors. In many situations, the
dimension dΦ of Φ is infinite. If we perform a truncation at k, we obtain a
finite-dimensional representation for Φ. The resulting sum in (2) after this
truncation can be viewed as an inner product between two k-dimensional
vectors: the first vector is the data point Φ(xxx) after projecting via KPCA,
and the second vector is a Gaussian random vector. We can therefore see
that KLSH performs LSH after projecting to an (m-1)-dimensional space
via principal component analysis in H.

Thus, we can present a theoretical analysis of KLSH via the “KPCA+LSH"
perspective. For simplicity, we assume truly random Gaussian vectors are
used.

Theorem 2. Consider an n-sample database S = {xxx1, . . . ,xxxn} and a query
point qqq. For any ε,ξ > 0, with success probability at least (1− e−ξ )/2 and
query time dominated by O(n

1
1+ε ) kernel evaluations, the KLSH algorithm

retrieves a nearest neighbor ŷyyqqq,k with corresponding bound

κ(qqq, ŷyyq,k)≥ (1+ ε)(1−
√

λk−η)κ(qqq,yyy∗q)− ε

− (2+ ε)
(√

λk +η

)2
, (3)

if we only keep those points with N(xxx) > 1−
√

λk −η for consideration,

where η = 2
δk
√

m

(
1+
√

ξ

2

)
and 0 < η < 1−

√
λk.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Recall@R improvement over (left) the vanilla KLSH with m =
1000 for rank ∈ {16,32,64,128,256,512}, (right) the rank-32 KLSH with
m = 1000 for scale ∈ {1,3,5,7,9} with 256-bit hash code.

Recall@100 Dataset KLSH LR LR+T IM
χ2 Flickr 0.3629 0.5125 0.6762 +++000...333111333333

SIFT1M 0.6942 0.7642 0.8213 +++000...111222777111
GIST1M 0.2252 0.3360 0.5260 +++000...333000000888

Intersection Flickr 0.4182 0.5738 0.6529 +++000...222333444777
SIFT1M 0.6397 0.7468 0.7844 +++000...111444444777
GIST1M 0.2746 0.4014 0.4913 +++000...222111666777

Table 1: Summary of absolute improvement for Recall@100.

Thus, as k (the number of chosen PCs) and m (the number of points for
estimating the eigenspace) become larger at appropriate rates, both

√
λk and

η will go to zero. Also, with a fixed k, increasing m will always improve
the bound, but the

√
λk term will be non-zero and will likely yield retrieval

errors. This has been empirically shown in [1], namely that the performance
of KPCA+LSH saturates when m is large enough, usually in the thousands.

Low-Rank Extension. With a fixed m, there is a trade-off between
decreasing λk and increasing 1/δk, similar to the classic bias-variance trade-
off in statistics; we expect 1/δk to increase as k increases, whereas λk will
decrease for larger k. In light of this, we introduce a low-rank extension
of KLSH: we may actually achieve better results by only projecting into a
smaller r-dimensional subspace, which can be seen in Figure 1.

Extension via Monotone Transformation. Another relevant factor is
the decaying property of the eigenvalues of the covariance operator C, which
not only affects the λk and δk, but also the constant which corresponds to
the estimation error. Since monotone transformation of the kernel function
will not change the relative ranking, we can explore these transformations
that can reward us better performance. For example, the exponential trans-
formation with scale parameter s > 0,

κs(xxx,yyy) = exp(s∗ (κ(xxx,yyy)−1)) . (4)
We can see that the ranking of the nearest neighbors stays the same no matter
what value we choose for s as long as s > 0. However, changing the scaling
impacts the eigenvalues of the covariance operator. In particular, it often
slows down the decay with s > 1 and will eliminate the decay entirely when
s→ ∞. The effect of the monotone transformation can be seen in Figure 1.

Table 1 summaries the total absolute improvement combining the two
techniques together. We can see that the retrieval improvement is at least
12%, sometimes much higher, among all benchmarks.This validates the
merit of our analysis regarding the interesting trade-offs shown in our per-
formance bound (3) and demonstrates the power of these simple techniques.
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