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Abstract

Object recognition systems have shown great progress
over recent years. However, creating object representations
that are robust to changes in viewpoint while capturing lo-
cal visual details continues to be a challenge. In particu-
lar, recent convolutional architectures employ spatial pool-
ing to achieve scale and shift invariances, but they are still
sensitive to out-of-plane rotations. In this paper, we for-
mulate a probabilistic framework for analyzing the perfor-
mance of pooling. This framework suggests two directions
for improvement. First, we apply multiple scales of filters
coupled with different pooling granularities, and second we
make use of color as an additional pooling domain, thereby
reducing the sensitivity to spatial deformations. We eval-
uate our algorithm on the object instance recognition task
using two independent publicly available RGB-D datasets,
and demonstrate significant improvements over the current
state-of-the-art. In addition, we present a new dataset for
industrial objects to further validate the effectiveness of our
approach versus other state-of-the-art approaches for ob-
ject recognition using RGB-D data.

1. Introduction

The core challenge of object recognition is to create rep-
resentations that are robust to appearance variations. Recent
advances in convolutional architectures [27, 26, 10, 8] have
achieved success in learning object representations with mi-
nor scale and shift invariances. Spatial Pooling, which
groups local features within spatial neighborhoods, is a key
component to achieve those invariance properties.

The discrimination and invariance capabilities of the
spatially pooled features can be examined with regard to
the density of pooling regions which we refer to as pool-
ing granularity. The Bag-of-words model, which can be
viewed as the extreme case of coarse pooling granularity,
can tolerate large variations of object appearances caused
by out-of-plane rotations. However, it loses the discrimina-

Figure 1. A comparison of fine-grained pooling between spatial
(X,Y ) and color (A,B) (last two channels in CIELAB) domains
when an object undergoes a out-of-plane rotation. Fine-grained
gridding (8 × 8) is performed in both domains. Pooling indices
in the color domain are shown by different colors in the images.
Pooling results for all pixels in two local patterns (enclosed by red
and blue rectangles) are shown between pairs of images in each
block. Correct feature alignments are made by the color domain,
but fail in the spatial domain.

tive power provided by the spatial layout of features [29].
Conversely, fine-grained spatial pooling, which uses small
and dense pooling regions (i.e., receptive fields), encodes
fine-grained visual cues but is sensitive to spatial rearrange-
ments in different object poses. This is demonstrated on
the left block of Fig. 1, where the same object parts are
pooled into different bins under an out-of-plane rotation.
One solution is to deploy ’deep’ convolutional architectures
[27, 9, 40, 37, 23] which hierarchically pool local responses
to boost the discrimination capability of features in the
coarse-grained pooling. However, local characteristics are
often lost due to the hierarchical pooling. This may not be
desirable for the object instance recognition (as opposed to
category recognition) where an object should be recognized
as exactly the same one that has previously been seen. Re-
cently, [17] integrates part-based modeling [4] into a deep
convolutional neural network [27] to create more spatially
aligned representations. They achieve state-of-the-art per-
formance in public fine-grained object recognition bench-
marks. This implies that robust fine-grained cues can be
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captured if visual features are better aligned with each other
during fine-grained pooling.

In this paper, we analyze the performance of pooling-
based convolutional architectures, and propose a simple
but effective solution of pooling beyond spatial domain us-
ing adaptive scales of filters, to address the feature mis-
alignment problem. Our major contributions are three-fold.
First, we formulate a probabilistic framework to mathemati-
cally explain how the pooling granularity affects the learned
representation in terms of the overall discrimination and in-
variance. We also argue that fine-grained pooling can be
improved with small-scaled filters and invariant pooling do-
mains that are insensitive to object transformations (one
example is the color domain shown on the right block of
Fig. 1). Second, based on these ideas, a novel multi-scale
and multi-domain pooling algorithm is presented to learn
fine-grained representations typical for large-scale object
instance recognition task. Small to large scales of filters are
coupled with fine to coarse pooling granularities in multiple
domains respectively, in order to encode both the localized
and global visual cues. Finally, we describe a new JHUIT-
50 dataset including 50 industrial objects. A new experi-
ment setting is designed to fully evaluate the invariance of
the representation with respect to 3D transformations. The
proposed method shows significant improvement over the
current state-of-the-art on two public large-scale RGB-D
datasets [28, 39] and the JHUIT-50 dataset.

The rest of the paper is organized as follows. Sec. 2 pro-
vides a background review of the invariant representation
learning. Sec. 3 introduces a probabilistic framework for
pooling which motivates our proposed method explained in
Sec. 4. Experiments are presented in Sec. 5 and we con-
clude the paper in Sec. 6.

2. Related Work
Invariant representation learning has been studied in the

past with empirical validations [30, 35, 22, 31] and theoret-
ical analyses [3, 2]. Spatial pooling is found to be critical
to gain the shift invariance in both feature coding pipelines
[29, 34, 25, 11] and deep convolutional neural networks
[27, 37, 23, 15]. Recently, an unsupervised feature learn-
ing theory [2] proposed an invariant signature by character-
izing the distribution of template responses within certain
transformation groups. This idea is shared in the design
of the TIRBM [41], where minor 2D affine transformations
are modeled during training. Similarly, data augmentation,
a trick commonly used in deep CNNs [15, 27], is function-
ally equivalent to this strategy. However, in this category of
work, only invariance to 2D affine transformations at most
can be guaranteed for general object classes and only a sub-
set of transformations can be modeled in practice.

Pooling in input feature space [12, 16, 42] can smooth
the representation for better invariance, but this tends to lose

discrimination capabilities. Thus, spatial layouts [12, 16] or
supervised labels [20] are employed to create discriminative
features. Additionally, learning optimal spatial pooling con-
figurations in multiple pooling scales has been attempted
by supervised [33, 24, 38] and unsupervised [46, 21] tech-
niques as well as segmentation priors [14]. This series
of work uses fixed filter scales in the spatial pooling do-
main while our method couples the adaptive filter scales
with pooling granularities and deploys additional pooling
domains to overcome feature misalignments.

Various rotationally invariant 3D feature descriptors [18,
19, 45, 1] were proposed for 3D object recognition, but
these have been out-performed by multi-cue kernel de-
scriptors [7, 8] and hierarchical convolutional architectures
[9, 5, 40] in large-scale settings [28, 39]. The state-of-
the-art method [9] mainly uses high-level features, coarse-
grained spatial pooling, and contrast normalization to al-
leviate large intra-class variance caused by 3D rotations.
However, spatial pooling still dominates the feature learning
in those approaches, which makes learned representations
only invariant to limited views of an object. In this study,
we demonstrate that pooling simple local features in invari-
ant domains can significantly boost the recognition perfor-
mance for the object instance recognition.

3. A Framework for Analysis of Pooling

An overview of the general pooling process in a convo-
lutional architecture is shown in Fig. 2. Filter responses
associated with each pooling state are activated by feature
filters convolved over visual signals. In the case of spatial
pooling, pooling states are pixels in normalized image coor-
dinates. A pooling operator extracts some statistics over fil-
ter responses within neighborhoods of pooling states. Few
theoretical investigations have been presented in the liter-
ature to explain why pooling is critical in creating invari-
ant representations. One pooling theory was proposed by
Boureau [13] in the context of hard-assignment coding. It
assumes that filter responses in a pooling region have identi-
cal and independent Bernoulli distributions given an object
class. These conditions restrict the theory from generaliz-
ing to more complex scenarios. In this section, we develop
a novel probabilistic view for pooling to resolve the afore-
mentioned issues, which in turn motivates the proposed fea-
ture pooling algorithm in Sec. 4.

3.1. Interpretation of Invariance and Discrimina-
tion

Consider a pooling domain S = {s1, · · · , sN} where
pooling state sj with 1 ≤ j ≤ N is a coordinate over which
pooling takes place. For example, in the case of RGB-D
data, S can be a set of spatial coordinates or color values,
corresponding to spatial and color domains.



Figure 2. Demonstration of a general pooling process and related
notations used in Sec. 3. At the top layer, we only show the con-
volution of one filter with one single scale. [Best viewed in color]

We now introduce a set of K filters D =
{d1, d2, · · · , dK}. In the context of feature coding, these
filters are codewords learned by dictionary learning tech-
niques. Note that filters are not necessarily defined over
the pooling domain (e.g., we could use the color domain
to pool responses from spatial filters). Next, we define
X = (x11, · · · , xjk, · · · , xNK) as non-pooled representa-
tion for a data sample, where each xjk = (sj , dk) captures
the activation strength of dk at sj (second row of Fig. 2).
Each visual signal that occupies sj contributes its K filter
responses to the part ofX associated with sj . If two or more
signals fall into the same sj , we could compute the final re-
sponse for each xjk using any statistics (maximum value
for example). Considering a random sampling of images
generated by applying some transformation function T for
object op, let Xp = (xp11, · · · , x

p
jk, · · · , x

p
NK) denotes the

random vector of the filter responses with the distribution
P (Xp) = P (X|op). The P (Xp) characterizes the distribu-
tion of the set of filter responses G = {Xp

i } where Xp
i is a

sample of Xp generated by T .
We measure the variability of Xp with an invariance

score Jp. Specifically, Jp is defined as the average Eu-
clidean distance1 between all samples in G:

Jp =
1

t2

t∑
i=1

t∑
j=1

‖Xp
i −X

p
j ‖

2
2 = E(||Xp − X̃p||22)

=

N∑
j=1

K∑
k=1

2Var(xpjk)

(1)

where Xp
i , X

p
j ∈ G. We use Xp and X̃p as random vari-

ables for {Xp
i } and {Xp

j } respectively, which share the
same distribution P (Xp). As we can see, the invariance
score Jp is actually the sum of variances of all dimensions
in Xp. It measures how concentrated the representation is

1This corresponds to the distance metric in linear SVM which is used
in this study.

under the transformation T . The smaller Jp, the better the
stability of the descriptor.

Next, we formulate a distance metric D(Xp, Xq) be-
tween Xp and Xq given two object classes op and oq as
follows:

D(Xp, Xq) =
1

2

‖∆E‖22
Jp + Jq

(2)

where ∆E = E(Xp) − E(Xq). We could interpret the
numerator and denominator in D(Xp, Xq) as the mea-
surements of the discrimination and invariance properties
of non-pooled representation X , respectively. In fact,
D(Xp, Xq) can be derived as the lower bound of the Bhat-
tacharyya distance metric DB(Xp, Xq) given that P (Xp)
and P (Xq) follow multivariate normal distributions with
covariances Σp and Σq . This can be shown as follows:

DB(Xp, Xq) =
1

8
∆E>Σ̄−1∆E +

1

2
ln

|Σ|√
|Σp||Σq|

≥ 1

8
∆E>(U Λ̄−1U>)∆E

≥ 1

8

‖U>∆E‖22
tr(Λ̄)

=
1

2

‖∆E‖22
Jp + Jq

= D(Xp, Xq)

(3)

where Σ̄ =
Σp+Σq

2 with eigen-decomposition Σ̄ = U Λ̄U>.
The second step is obtained by the Cauchy-Schwarz in-
equality and the third step is derived according to the medi-
ant inequality 2. The final step follows by ‖Ux‖ = ‖x‖ if U
is unitary and the tr(Λ̄) = tr(Σ̄) = 1

4 (Jp + Jq). Note that
random variables are allowed to be dependent on each
other in this derivation. From the perspective of the lower
bound of DB(Xp, Xq), D(Xp, Xq) characterizes the most
ambiguous region between two feature distributions. Notice
that D(Xp, Xq) shares a similar form with the objective in
linear discriminant analysis (LDA) and distribution separa-
bility in [13] using a signal-to-noise ratio.

3.2. Variance Reduction via Pooling

In this section, we show that pooling filter responses
within regions in S reduces the variance of the non-pooled
representation Xp. Let R = {R1, · · · , RM} be a parti-
tion of S (i.e., a set of non-overlapping pooling regions)
and assume max pooling is used 3. In turn, we define
a new random variable yik = maxsj∈Ri

xjk that repre-
sents the pooled filter response in pooling region Ri. Anal-
ogous to Xp, we then define the random vector Y p

R =

2 b
a
+ d

c
≥ b+d

a+c
if a, b, c, d ≥ 0

3We choose max pooling operator [36] for our main analysis because
many studies [13, 11] show its better performance over average pooling.
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R is the invariance score of the
pooled representation Y p

R. We can then prove the follow-
ing result using the fact that Var(maxiXi) ≤

∑
i Var(Xi)

4:

Jp
R =

K∑
k=1

M∑
i=1

2Var(ypik) ≤
K∑

k=1

N∑
j=1

2Var(xpjk) = Jp (4)

In short, max pooled feature Y p
R has lower variance than

non-pooled feature Xp, which means Y p
R is less sensitive

to transformations T than Xp. The same can be shown for
average pooling 5 because Var( 1

N

∑
iXi) ≤

∑
i Var(Xi).

Furthermore, Jp is a very loose upper bound for Jp
R in Eq.

4. The equality is achieved in the asymptotic regime when
one random variable is always greater than remaining ones
with zero variance. Therefore, Jp

R is much smaller than Jp

in practice.
Furthermore, in the case of intersecting pooling regions

R̂ = {R̂1, · · · , R̂M}, we can find a non-overlapping set
R = {R1, · · · , RM} subject to ∪Ri = ∪R̂i and Ri ⊆ R̂i.
Then we can get Jp

R̂
≤ Jp

R because each R̂i further pools
the result of Ri so that the invariance score decreases ac-
cording to Eq. 4. Thus, the overlapping pooling scheme
achieves even lower variance than the non-overlapping case,
though it tends to decrease ‖∆ER̂‖

2
2 = ‖E(Y p

R̂
)−E(Y q

R̂
)‖22

since each pooling region is more likely to acquire high ac-
tivation responses when it is enlarged. For simplicity, we
continue to assume pooling regions are a partition in the
following discussion.

Analogous to Eq. 3, we can also write the distance be-
tween Y p

R and Y q
R for object classes op and oq as follows:

D(Y p
R, Y

q
R;R) =

1

2

‖∆ER‖22
Jp
R + Jq

R
(5)

where ∆ER = E(Y p
R) − E(Y q

R). It is clear that greater
discrimination ‖∆ER‖22 and lower variance Jp

R + Jq
R lead

to better separability and in turn easier classification.

3.3. Conclusions and Discussions

The above probabilistic framework for pooling yields
three major conclusions:

1. As pooling granularity changes from fine to coarse
levels, pooled features have better invariance (smaller
Jp
R) but less discrimination (smaller ‖∆ER‖22).

2. Small-scale filters achieve better invariance than the
large-scale ones in fine-grained pooling.

3. Pooling domains that are insensitive to transformations
obtain better invariance in fine-grained pooling.

4This is proved by the Theorem 1 in the supplementary material
5It is equivalent to sum pooling in the context of Eq. 5

The first point follows from to Eq. 4. Jp
R is monotonically

decreasing (i.e., invariance of Y p
R is increasing) with grow-

ing size of pooling regions. This can be shown by replacing
the left and right sides in Eq. 4 with variances of pooled
features from small and large pooling regions, respectively.
On the other hand, the discrimination term ‖∆ER‖22 =∑K

k=1

∑M
j=1 |E(ypjk) − E(yqjk)|2 tends to decrease due to

smaller M at a coarse pooling granularity, especially when
yjk is bounded in most of the feature encoding algorithms.
One good tradeoff between invariance Jp

R + Jq
R and dis-

crimination ‖∆ER‖22 to get largeD(Y p
R, Y

q
R;R) is made by

’deep’ representations [27, 9, 5, 40, 26, 37, 23], which aug-
ments discrimination capabilities in coarse-grained pooling
with highly class-specific filters. In this work, we pursue a
good tradeoff along the other direction in which the feature
invariance is enhanced in fine-grained pooling.

Next, we jointly analyze the last two points by looking
more closely at Var(xpjk). In the context of fine-grained
pooling where the number of pooling regions M is large,
the invariance score Jp

R significantly drops if the variance
of filter responses at each pooling state Var(xpjk) is re-
duced whereas the discrimination term ‖∆ER‖22 is domi-
nated by M and remains roughly the same. Therefore, we
explore two ways to reduce Var(xpjk) for better separability
D(Y p

R, Y
q
R) in fine-grained pooling. Specifically, we ob-

serve that P (xpjk) can be decomposed into the following
two forms:

P (xpjk) = P (dk|sj , op)P (sj |op) (6)

P (xpjk) = P (sj |dk, op)P (dk|op) (7)

As a result, Var(xpjk) is positively proportional to
Var(dk|sj , op) or Var(sj |dk, op) 6. Then we could make
Var(xpjk) smaller by decreasing either Var(dk|sj , op) or
Var(sj |dk, op). First, reducing Var(dk|sj , op) can be inter-
preted as choosing filters that have smaller variance across
the pooling domain S. Given a fixed filter learning method,
smaller Var(dk|sj , op) is achieved via small-scale filters
rather than large-scale ones because the value changes of
local regions are less than large areas in convolution. How-
ever, large-scale filters are prone to create better discrim-
ination, which is more favored in coarse-grained pooling.
Second, reducing Var(sj |dk, op) is equivalent to construct-
ing a pooling domain where appearance features have better
alignments at each sj . In other words, a more robust pool-
ing domain with respect to transformations leads to smaller
variance of filter responses at each pooling state sj . Consid-
ering 3D transformations, spatial layouts of the transformed
object samples change sharply while color configurations

6This is proven by Theorem 3 in the supplementary material



are typically aligned across different poses 7. The possible
color misalignment is caused by different lighting condi-
tions, which can be largely alleviated by a good choice of
color space and the pooling process. This fact motivates us
to exploit the color domain as an example of an invariant
domain in this study .

Although the spirit of discrimination-invariance trade-
off is already revealed by some kernel learning techniques
[44], our framework associates it with pooling operator in
the context of the convolutional architecture. As far as we
know, we are the first to present this novel view and explore
the way to make a good tradeoff. All the three conclusions
derived in this section are empirically validated in Sec. 5.1.

4. Multi-Scale and Multi-Domain Pooling
The three theoretical views shown in Sec. 3.3 directly

lead to the design of the multi-scale and multi-domain pool-
ing algorithm presented in this section. Prior to going into
the details of the proposed method, we first briefly explain
the local feature we use. Specifically, we choose the rota-
tionally invariant 3D descriptor CSHOT [19] as the raw fea-
tures associated with each RGB-D image pixel. We modify
the original CSHOT descriptor by decoupling the color and
depth components. Then, dictionaries for each component
are learned via hierarchical K-means and in turn feature
codes are generated by a soft-assignment encoder [43, 32],
which has been shown to perform as well as the sparse cod-
ing, but with much less computation. Soft-assignment cod-
ing can be formulated as follows:

µj =
exp

(
βd̂(x, dj)

)
∑n

k=1 exp
(
βd̂(x, dk)

)
s.t. d̂(x, dk) =

{
d(x, dk) : dk ∈ Nk(x)

+∞ : dk /∈ Nk(x)

(8)

where d̂(x, dk) is the localized form of the original squared
Euclidean distance d(x, dk) between raw visual signal x
and codeword dk and Nk(x) denotes the k-nearest neigh-
bors of x defined by d(x, dk) within dictionary D =
{d1, d2, · · · , dK} (i.e., filters defined in Sec. 3.1). β is a
smoothing parameter with negative value. Depth and color
feature codes are concatenated as filter responses for x. We
keep the feature extraction simple in order to isolate the con-
tributions in our proposed pooling algorithm.

Next, we use the conclusions of Sec. 3.3 to guide the de-
sign of our feature learning algorithm. Unlike spatial pyra-
mid pooling, where filter responses with fixed scale go into
different pooling levels, the second point in Sec. 3.3 in-
spires us to pool responses from small-scale filters in fine-

7Photometric variation of object appearances are much smoother in
general.

Figure 3. Overview of multi-scale and multi-domain pooling ar-
chitecture.

grained levels while large-scale filter responses are pooled
in coarse-grained levels. In our implementation, we adopt
the max pooling operator and adjust the scales of filters (i.e.,
codewords) by altering the 3D radius of CSHOT feature.
Filters at each scale are learned independently via hierar-
chical K-means. Moreover, we employ the color domain for
feature pooling in addition to the spatial domain (the third
point in Sec. 3.3). Therefore, each CSHOT filter response
goes into a pooling region based on the color value of the
RGB-D image pixel associated with it and the max pooling
is applied for all responses within the same pooling region.
Note that spatial domain is not abandoned because spatially
aligned features under slight change of view points could
still benefit the recognition (shown in Sec. 5.2).

In summary, the proposed method (shown in Fig. 3) is
evolved from the common coding-pooling pipeline [29, 11,
10], but it conducts an adaptive pooling scheme on con-
volutional filter responses in multiple scales and both the
color as well as spatial domains. Pooled features from fine
to coarse pooling levels across different domains are con-
catenated together to generate the final representation and a
linear SVM is used for the classification.

5. Experiments

We perform experiments on three RGB-D datasets: UW-
RGBD[28], BigBIRD[39] and our own JHUIT-50 dataset.
CSHOT features [19] are extracted densely over each point
in the point cloud that is generated from color and depth
images. We alter the radius of the CSHOT feature to adjust
the scale of the filters. Depth and color components in the
raw CSHOT feature are decoupled into two feature vectors.
Dictionaries with 200 codewords are learned by hierarchical
K-means for each component. Note that the dictionary size
is fixed across CSHOT filters with different radii. Finally, a
soft-assignment encoder [43, 32] is used to generate feature
codes of both components which are further concatenated
as the local feature code. We choose the number of near-



Figure 4. Comparison of the variances in different filter scales,
pooling granularities and domains. The legend name ’domain-
radius’ indicates the pooling domain and the radius of CSHOT
features respectively. [best viewed in color]

est neighbors K as K = 45 and the smoothing factor β
as β = −4.0 in soft encoding (Eq. 8). All parameters are
selected by cross-validation on a subset of the UW-RGBD
dataset 8. Feature codes within the same pooling region
are further normalized using the L2-norm. We choose the
CIELAB color space as the color pooling domain since we
found that it achieves better performance than both RGB
and HSV color spaces. The spatial domain is constructed in
3D space (XYZ). Each channel in the spatial and color do-
mains is normalized to [0, 1] to gain scale invariance. The
feature codes are pooled inside the cells of the pyramid with
multiple levels. Each level is constructed with a different
granularity by gridding in a particular domain. Specifically,
level-k in either the spatial (XYZ) or color (LAB) domain
is constructed by k × k × k grids. Pooled features across
different levels and domains are concatenated as the final
representation.

5.1. Variance Reduction via Pooling

We first conduct an experiment to verify the three con-
clusions derived from the probabilistic framework in Sec
3.3. The experimental results obtained in this section
are commonly observed in almost all objects in those
three datasets. For simplicity, we choose the object
’mixed berry’9 from BigBIRD as the representative for
analysis. The variance in object representation is rooted
from different object poses under 3D transformations. A
detailed description about the object data can be found in
Sec 5.3. CSHOT features with radii ranging from 0.02m
to 0.06m are extracted and pooled from level-1 to level-
20 separately in both the XYZ and LAB domains. Fig. 4
shows the empirical invariance scores of Eq. 1 across dif-
ferent levels and domains. Three major observations fol-
low: (1) The invariance of the representation generated by
all scales of filters in either domain increases via pooling 10

8First 30 object instances.
9It is short for ’eating right for healthy living mixed berry’.

10Smaller invariance score indicates better invariance.

Algorithm Acc. Algorithm Acc.
Linear SVM [28] 73.9 XYZ-S-5 85.5

NonLinear SVM [28] 74.8 LAB-S-5 89.8
RF [28] 73.1 All-S-5 93.3

CKM Desc. [5] 90.8 XYZ-M-5 87.9
Kernel Desc. [6] 91.2 LAB-M-5 91.9

HMP-All [8] 92.8 All-M-5 94.1
Table 1. Testing accuracies (%) of different methods on UW-
RGBD. Variants of proposed method are marked in bold type.

and maximal invariance is achieved by pooling in the entire
domain (i.e., bag-of-words model). (2) Large-scale filters
retain greater variance in all levels and both domains than
small-scale filters. (3) The color domain exhibits much less
variance in the learned representation than the spatial do-
main in all pooling granularities. These three observations
empirically verify the three major points concluded in Sec
3.3. This further supports the proposed algorithm in Sec. 4.

5.2. UW-RGBD Object Dataset

Next, we evaluate our method on the UW-RGBD dataset
which contains 300 daily object instances taken from dif-
ferent view points. The objects in this dataset are seg-
mented from the background using color and depth cues.
Both textured and textureless objects in various poses make
this dataset challenging for recognition. In this study, the
proposed fine-grained representation is tested on the ob-
ject instance recognition task with the leave-sequence-out
setting. Table 1 reports the testing accuracies of the pro-
posed methods and comparative algorithms in the literature.
The algorithm name for different variants of the proposed
method (marked in bold type in Table 1) is formatted as
’domain-type-level’. More specifically, ’domain’ indicates
the pooling domain from LAB, XYZ or both, ’type’ in-
cludes ’S’ and ’M’ referring to single and multiple scales
of filters, and ’level’ specifies the number of stacked levels
used in the pyramid from level-1. For type ’S’, we use the
CSHOT feature with radius 0.03 across all experiments. In
type ’M’, feature responses from five scales of CSHOT fil-
ters from 0.02m to 0.06m with interval 0.01m are pooled
within levels from 5 to 1 respectively. Table 1 shows that
the multi-scale and multi-domain pooling scheme (’All-M-
5’) achieves the best result at 94.1%, which outperforms
the current state-of-the-art with 92.8%. It also shows that
the XYZ domain performs worse than the LAB domain and
the combination of both domains achieves the best perfor-
mance. This is because the view point changes in this exper-
iment design (15 ∼ 20 degrees) do not significantly disrupt
the spatial layout for some typical objects with nearly ho-
mogeneous appearances, like a ball. Thus, correct feature
alignments can be captured by spatial pooling to benefit the
overall recognition. Lastly, multiple-scale filter (M) is con-
sistently superior to single single-scale filter (S) in terms of



Algorithm Acc. Algorithm Acc.
XYZ-S-1 75.1 LAB-S-1 75.1
XYZ-S-2 84.3 LAB-S-2 87.8
XYZ-S-3 86.1 LAB-S-3 88.3
XYZ-S-4 85.7 LAB-S-4 89.2
XYZ-S-5 85.5 LAB-S-5 89.6

Table 2. Testing accuracies (%) of different number of stacked lev-
els in spatial (XYZ) and color (LAB) domains.

Algorithm Acc. Algorithm Acc.
OUR-CVFH [1] 10.2 XYZ-S-8 31.2

ESF [45] 23.1 LAB-S-8 85.9
Kernel Descr. [6] 85.5 ALL-S-8 82.5
HMP-Depth [8] 35.1 XYZ-M-8 36.4
HMP-Color [8] 84.4 LAB-M-8 88.4
HMP-All [8] 80.8 All-M-8 84.6

Table 3. Testing accuracies (%) of different methods on BigBIRD.
Variants of proposed method are marked in bold type.

the recognition rate.
Another experiment was performed to analyze how pool-

ing granularity affects classification. Only single-scale fil-
ters are used in order to eliminate the effect of multi-scale
filters. Table 2 reports the accuracies achieved by different
numbers of stacked levels in XYZ and LAB. Accuracies in
level-1 are the same between XYZ and LAB because the
bag-of-words modeling results in the same pooled features
regardless of the domain. Beyond level-1, the color domain
consistently achieves higher accuracies than the spatial do-
main. Also, when pooling is performed over fine-grained
levels, color pooling is able to continuously boost the recog-
nition rates while spatial pooling fails to do so. This obser-
vation substantiates that the better invariance achieved by
the color domain (shown in Fig. 4) helps to utilize the dis-
crimination power in fine-grained levels.

5.3. BigBIRD Object Dataset

We also tested our algorithm on the BigBIRD dataset
[39]. This dataset contains 125 daily objects in which many
object instances are very similar to each other. Each ob-
ject has 600 Kinect-style RGB-D images covering five fixed
viewing angles from 0 to 90 degrees 11. As a result, the
pose variation in BigBIRD is much larger than UW-RGBD
in which object data is captured in three viewing angles of
30, 45 and 60 degrees. In turn, we adopt an architecture
with a maximum of 8 stacked levels in both domains, in or-
der to further analyze fine-grained pooling under a larger
subset of 3D transformations. As far as we know, there
is no evaluation metric for the object instance recognition
on BigBIRD. Thus, we follow the similar experiment de-
sign in UW-RGBD to use sequences of the first, third and

11Though this dataset provides high-resolution color images and full 3D
meshes, we only use the RGB-D images in this study.

Figure 5. Classification accuracies at each level in pyramid and
average distances (Eq. 5) between all object classes in color and
spatial pooling domains.

fifth viewing angles defined in BigBIRD for training and the
remaining two for testing. We choose the state-of-the-art
HMP[8], kernel descriptor [6] on UW-RGBD dataset and
two rotationally invariant 3D descriptors OUR-CVFH [1]
and ESF [45] for comparison. Those methods are imple-
mented with source codes provided by the authors12 and the
PCL library13. Parameters for all comparative methods are
optimized by cross-validation on the first 30 objects. From
Table 3, we observe our proposed architecture ’LAB-M-8’
14 achieves the highest recognition rate. Unlike the results
in UW-RGBD, the combined domain is inferior to the color
domain only. This is mainly because spatial pooling per-
forms much worse than color pooling in both single and
multiple filter scales.

For a more detailed analysis, we plot the recognition ac-
curacies of each level (no stacking) in the color and spatial
domains in Fig. 5. Clearly, the testing accuracies achieved
by the spatial domain drop dramatically in fine-grained lev-
els while the color domain continuously boosts the accura-
cies. Also, the multi-scale filters still perform better than
the single-scale ones, which coincides with the observation
in UW-RGBD. Finally, we calculate the average probabilis-
tic distances of Eq. 5 between all pairs of object classes for
pooled features using multi-scale filters. The solid (LAB-
M-D) and dashed (XYZ-M-D) green lines show the aver-
age distances at each level in the LAB and XYZ domains,
respectively. We can see that the distance metric derived in
Eq. 5 is able to describe the general trend of the recogni-
tion performance, which further validates the probabilistic
framework in Sec. 3.

5.4. JHUIT-50 Dataset

We present the JHUIT-50 dataset with a RGB-D cam-
era 15 that contains 50 industrial objects and hand tools fre-
quently used in mechanical operations. We segment each

12http://rgbd-dataset.cs.washington.edu/software.html
13http://pointclouds.org/
14Multiple scales of filters are specifically 0.02, 0.02, 0.02, 0.03, 0.03,

0.04, 0.04, 0.05, 0.05, 0.06 for levels from 8 to 1.
15PrimeSense Carmine 1.08 depth sensor is used.



Figure 6. Object examples in JHUIT-50 dataset. Left and right
columns show two pairs of ambiguous object instances.

object from the background following the same procedures
in the BigBIRD dataset. Fine-grained visual cues are often
employed to distinguish these types of objects. For exam-
ple, the left column of Fig. 6 shows two screwdrivers with
only slight differences of texture patterns. Also, we treat
different articulations of objects as separate object instances
during recognition. The right column of Fig. 6 shows two
configurations of a green clamp. We refer readers to the
supplementary material for more details of this new dataset.

In the previous two experiments, testing data comes from
sequences with fixed viewing angles. This constrained set
of partial views may bias the evaluation of generalization
performance towards a limited space in the entire viewing
sphere, which is not desirable as a test for a realistic recog-
nition scenario. In order to compensate for this drawback,
we adopt two distinct collection procedures for training and
testing data. On the training side, each object is placed on a
turntable in increments of 7.2 degrees at three fixed camera
viewing angles with 30, 45 and 60 degrees. This amounts
to 360

7.2 × 3 = 150 object views in total for training. For
testing data, we manually move the camera around objects
to sample another 150 random views of the object from the
whole viewing sphere as the testing data. In this newly de-
signed experiment setting, the testing data sampled from the
full pose space contains larger pose variations than the pre-
vious two datasets. We deploy the same architecture with
an 8 level pyramid used in BigBIRD on this dataset and the
testing accuracies are reported in Table 4. We can clearly
see that the experiment results on this dataset are similar to
the previous two. First, color pooling and multi-scale filters
are consistently superior to the spatial pooling and single-
scale filters. Additionally, ’All-M-8’ achieves the best re-
sult which significantly outperforms any others. Notice that
spatial domain performs relatively better compared with the
experiments on the BigBIRD dataset, though the pose vari-
ation is larger. This is mainly because the random testing
views have overlaps with training views so that the spatial
domain can positively contribute correct feature alignments
for a subset of data.

Algorithm Acc. Algorithm Acc.
OUR-CVFH [1] 45,1 XYZ-S-8 75.5

ESF [45] 76.8 LAB-S-8 88.6
Kernel Descr. [6] 82.1 ALL-S-8 90.5
HMP-Depth [8] 41.1 XYZ-M-8 76.6
HMP-Color [8] 81.4 LAB-M-8 90.1
HMP-All [8] 74.6 All-M-8 91.2

Table 4. Testing accuracies (%) of different methods on IT.

5.5. Limitations

Although the proposed method achieves improvement
over the current state-of-the-art on the aforementioned three
datasets, two major limitations remain. First, fine-grained
pooling in high levels (> 8) results in feature vectors with
more than one million dimensions though it is sparse due
to the soft-assignment encoder. This prevents more fine-
grained implementations on large-scale data. We could re-
solve this issue by using receptive field learning techniques
[33, 24] to select a subset of pooling regions. Second, the
color domain fails to generalize object poses across differ-
ent object instances that have different color distributions,
which makes it less applicable in object category recogni-
tion. Recall that any feature space could be used as a pool-
ing domain in Sec. 3. A promising solution is constructing
other invariant domains that capture the invariant properties
for both object poses and category characteristics.

6. Conclusion and Future Work
In this paper, we have presented a fine-grained fea-

ture learning framework that is insensitive to common 3D
transformations using multi-scale and multi-domain pool-
ing. The three main conclusions of this work are that: (1)
a good fine-grained representation can be learned by fine-
grained pooling within domains that are insensitive to object
transformations; (2) filter responses over small-scale areas
are preferred in fine-grained pooling; (3) the spatial domain
is much less favorable than color domains towards learn-
ing representations that are invariant to 3D transformations,
typically in the case of fine-grained pooling. We demon-
strated that the proposed feature learning architecture sig-
nificantly outperforms the current state-of-the-art on both
public and self-collected datasets.

We believe the theoretical pooling framework in this
work can inspire a new design of feature learning archi-
tectures. For future work, not only can we explore new
pooling domains with better invariance properties, but also
new deep representations constructed beyond the spatial do-
main.
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