
3D Reconstruction in the Presence of Glasses by Acoustic and Stereo Fusion

Mao Ye1, Yu Zhang2, Ruigang Yang1, Dinesh Monacha3

1University of Kentucky. 2Nanjing University, China. 3University of North Carolina at Chapel Hill.

Ultrasonic Sensor 

Figure 1: (Top-left): our modified Kinect sensor; (Bottom-left) input depth
map, yellow dots are range readings from the ultrasonic sensor; (top-right)
color-coded segmentation result; (Bottom-right) final reconstruction results,
in which the glass panes are recovered, the chair is behind the door.
We present a practical and inexpensive method to reconstruct 3D scenes that
include piece-wise planar transparent objects. Our work is motivated by the
need for interior 3D modeling, in which glass structures are common. These
large structures are often invisible to cameras or even our human visual sys-
tem. Existing 3D reconstruction methods for transparent objects are usually
not applicable in such a room-size reconstruction setting.

Our approach augments a regular depth camera (e.g., the Microsoft
Kinect camera) with a single ultrasonic sensor, which is able to measure
distance to any objects, including these completely transparent ones. A user
can sweep the camera around to scan the scene of interests, in a fashion
similar to KinectFusion [2]. From the multiple ultrasonic sensor readings,
we have developed a novel sensor fusion algorithm to combine the sparse
range values from the ultrasonic sensor with the depth map based on stereo
vision. The main challenge in this fusion algorithm is that the ultrasonic
sensor readings are vary sparse and unevenly distributed compared to the
depth maps.

Assuming piece-wise planar transparent objects, we formulate this fu-
sion problem as a labeling problem followed by depth reconstruction. More
specifically we define a Bayesian Network to optimally infer whether a pixel
should be assigned to the depth value by the stereo matching, one of the
fitted planes from the ultrasonic sensor, or infinity (unknown). From the la-
beled pixels we then update the depth map in which transparent objects can
be reconstructed.

We assume the target transparent objects are piece-wise planar. We first
fit multiple planes to the data collected from the ultrasonic sensor using
RANSAC. Then we perform segmentation/labeling in the 2D depth map
space. Each pixel is labeled as one of the categories in our candidate set
C = {∞,ζ ,πk|k = 1, · · ·K} with K +2 elements. The ∞ label means empty
space where no data can be observed from neither sensors. The ζ label
means the first point hit along line of sight is not from a transparent object
and the depth data can be observed. By contrast, each πk label defines the
pixel from our fitted surface planes πk of the transparent objects.

We define the Bayesian Network in Fig. 2 to describe our labeling pro-
cess. Here Lt

i ∈ C denotes which category that node it (defined as pixel i
at frame t) belongs to and is our target. Our observations from depth sen-
sor and Ultrasonic depth are represented as Zt

i and St
i respectively. The data

captured from depth sensor does not solely depend on labeling, but also is af-
fected by occlusion. Specifically, if a non-transparent object resides behind
a transparent one, the depth sensor will very likely capture the geometry of
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the non-transparent object, while the label of the corresponding pixel should
be the transparent object. Therefore, in our model, we use a hidden binary
variable Ot

i to explicitly model the phenomena, which takes value 1 if the
pixel falls into this situation and 0 otherwise. Our Bayesian Network takes
into consideration both the spatial connectivity ψ(Lt

i ,L
t
j) for pair (i, j) at

frame t and temporal consistency ψ(Lt
i ,L

t+1
k ) between node it and its corre-

spondence it+1 in the next frame. Based on this graphical model, the node
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Figure 2: The graphical model.

potential φ(Lt
i) can be expressed as:

φ(Lt
i) = P(Lt

i) ·P(Zt
i |Lt

i) ·P(St
i |Lt

i) (1)

The introduction of the hidden variable O makes it more intuitive to model
the probability P(Z|L):

P(Zt
i |Lt

i) = P(Zt
i |Ot

i = 0,Lt
i) ·P(Ot

i = 0|Lt
i)

+P(Zt
i |Ot

i = 1,Lt
i) ·P(Ot

i = 1|Lt
i) (2)

The labeling problem can then be cast as a MAP problem that minimizes
the following energy function:

E =−∑
t

∑
i

log(φ(Lt
i))− ∑

<i, j, f ,g>
log(ψ(L f

i ,L
g
j)) (3)

where the quadruple < i, j, f ,g > defines a pair of pixels (i, j) that are either
spatially ( f = g) or temporally ( f 6= g) connected and forms an edge in the
graph. The first term (data cost) and the second term (smoothness cost) are
described in detail in the paper. With these terms defined, we use the Graph
Cuts algorithm [1] to solve this labeling problem.

The second step of our framework is depth reconstruction for the trans-
parent objects based on the labeling information. Pixels that are labeled as
one of the transparent surfaces require the depth values being re-estimated.
For each of these pixels, we calculate an initial value by casting a ray from
the camera center through the pixel and intersecting with the target surface.
In order to obtain smooth reconstruction, we adopt the Poisson Blending
technique [3] to refine the estimation.

Our reconstruction framework produces promising results on real scenes
with various complexities. We hope our work will encourage more explo-
ration in combing aural and visual sensors for 3D reconstruction and be-
yond.
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