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Abstract

Extracting high-resolution information from highly de-
graded facial images is an important problem with sev-
eral applications in science and technology. Here we de-
scribe a single frame super resolution technique that uses
a transport-based formulation of the problem. The method
consists of a training and a testing phase. In the training
phase, a nonlinear Lagrangian model of high-resolution fa-
cial appearance is constructed fully automatically. In the
testing phase, the resolution of a degraded image is en-
hanced by finding the model parameters that best fit the
given low resolution data. We test the approach on two
face datasets, namely the extended Yale Face Database B
and the AR face datasets, and compare it to state of the art
methods. The proposed method outperforms existing solu-
tions in problems related to enhancing images of very low
resolution.

1. Introduction

Super-resolution (SR) is the process of reconstructing a
high-resolution (abbr. high-res) image from one or several
corresponding low-resolution (abbr. low-res) images. SR
techniques have been used in a wide variety of applications
from satellite and aerial imaging to intelligence surveil-
lance, medical image processing, and finger print enhance-
ment. In particular, the use of SR techniques to infer high-
res face images from low-res ones has recently attracted a
large amount of interest in the image processing and com-
puter vision communities [2, 15, 27, 28].

Based on the number of low-res images used to recon-
struct the corresponding high-res image, SR techniques can
be broadly categorized into two major classes [20], namely
“multi-frame” SR (MFSR) [4, 10, 9, 19] and “single-frame”
SR (SFSR) [2, 11, 16, 27]. Due to the inherent undersam-
pling, most SR problems are inherently ill-posed. Meaning
that for a specific low-res image there exist multiple cor-
responding high-res images. Generally speaking, SR tech-
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niques overcome this problem by constraining the space of
high-res solutions using either information from multiple
low-res images or prior information regarding the class of
high-res images. The idea is to restrict the space of solutions
to automatically discard irrelevant solutions of the problem.

We begin by noting that the class of face images is a
relatively small subset of the entire set of high-res images.
This is because of the unique structure of the human face
(i.e. eyes, nose, mouth, etc). In SFSR techniques, this prior
knowledge is first learned from a set of high-res training im-
ages and then it is used to reconstruct a high-res image from
a low-res test image. Baker and Kanade [2], for instance,
proposed to learn a prior on the spatial distribution of the
image gradient for frontal images of faces. Chakrabarti
et al. [7] proposed to learn a kernel principal component
analysis-based prior model for high-res images. More re-
cently, Zou et al. [28] proposed a method based on learning
the best linear mapping that maps low-res images to their
corresponding high-res images.

In this paper we focus on SFSR techniques and describe
a method for reconstructing high-res faces from very low-
res face images (e.g. 16 x 16 pixels) by learning a nonlinear
Lagrangian model for the high-res face images. Our tech-
nique is based on the mathematics of optimal transport, and
hence we denote it as transport-based SFSR (TB-SFSR).
The idea is to use the Monge formulation of the optimal
transport problem [1, 13], and with it construct a nonlin-
ear model for both the pixel intensities and their locations
for facial images. Our model is nonlinear, and Lagrangian
(using PDE parlance) in the sense that intensities are not
compared using a fixed grid but can also be displaced and
transported to other image regions. In short, TB-SFSR first
finds diffeomorphisms, in the sense of ‘optimal transport’,
from a reference face to the training faces and then learns a
linear subspace that best describes these diffeomorphisms.
Next, it constrains the space of high-res images to those that
can be obtained by morphing the reference face using an ar-
bitrary diffeomorphism from the learned subspace.

We show that TB-SFSR can be used to recover informa-
tion from very low-res face images. We test our proposed
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method on the extended Yale Face Database B [12, 14] and
the AR face dataset [17, 18] and compare our results to
those of the methods presented in [7, 27], and [28].

The remainder of this paper is organized as follows. Sec-
tion 2 describes a few of the main ideas developed in other
SFSR works and lays the foundation for our work. In Sec-
tion 3, we describe our formulation in detail and discuss the
idea of Lagrangian modeling using optimal transport. Var-
ious experimental results in Section 4 are used to demon-
strate the efficacy of the proposed Lagrangian modeling. Fi-
nally, in Section 5 we conclude with a discussion and point
out future directions.

2. Overview of prior work

Here we describe, in a general sense, some of the main
ideas previously used in SFSR problems. Due to space
limitations, our goal is to focus on a broad description of
the mathematical modeling ideas, citing specific examples,
rather than providing an exhaustive review of previously de-
scribed methods. In SFSR, given a low-res image I; the goal
is to reconstruct the corresponding high-res image I;,. The
observed low-res image I; is a degraded version of [;,. Let
¢(.) be the degradation function in its most general form
such that

Iy = ¢(In). 6]

An optimal I can be found by maximizing the posterior
probability p(I|I;), based on the maximum a posteriori
(MAP) criteria,

I = argmax;, Pr(I|l;)
= argmax, In(Pr(L|In)) +In(Pr(ly)) (2)

where the first term of the above objective function is the
log likelihood and the second term is the a priori informa-
tion on the image, which can be interpreted to represent in-
formation about the given class of images (i.e. an image
model).

Most commonly, p(I;|1},) is modeled by a Gaussian dis-
tribution and hence the log likelihood in (2) is written as
In(Pr(L|1n)) = —||I; — ¢(Ip)|>. As for the degrada-
tion function ¢, it is commonly modeled using a low pass
blurring filter together with a downsampling operation [20].
The choices for the a priori model, on the other hand,
are vast throughout the literature. Early SFSR techniques
used the assumption that I;, should be smooth, and hence
the modeling should enforce the reconstructed image to be
piecewise/locally smooth. Markov random fields (MRF)
are considered as a useful prior image model [2 1] to enforce
such smoothness. This is equivalent to regularizing the log
likelihood by an energy function, U (I},), derived from the
MRF model [21],

. 1
I, = argmlnlh§||Ilf¢(fh)||g+>\U(Ih) 3)

where A is the regularization parameter. Local smoothness
constraints are ubiquitously used in image reconstruction
problems [20]. In SFSR problems, however, they can fail
to reconstruct high frequency detail and may produce an-
swers which are overly smooth and suffer from staircasing
artifacts (i.e. in TV regularization) [10, 20].

More recent approaches involve constructing a linear
subspace model for high-res images, and solve the prob-
lem of SFSR by constraining the reconstructed image to be
the best approximation to the data this model can produce
[6, 24]. Hence, in these methods the log likelihood term is
regularized by the projection error of I;, onto the learned
subspace, L,

.1
In = argming, oL — ¢(In)lI3 + AlIn — Pr(In)|3
4)

where Pp,(I}) is the projection of image I;, onto subspace
L. Using similar ideas, Yang et al. [27] proposed a model
which assumes that the high-res image patches, can be rep-
resented as a linear combination of few basis images.

We note that, generally speaking, most SFSR methods
previously described are based on a linear model for the
high-res images. Meaning that, ultimately, the majority of
SFSR models in the literature can be written as

In(x) = Z w;;(X), )

where I}, is a high-res image or a high-res image patch, w’s
are weight coefficients, and v’s are high-res images (or im-
age patches), which are learned from the training images
using a specific model. For instance, in [24], i’s are the
eigenvectors of the high-res training images, obtained from
applying PCA to these images. Chakrabarti et al. [7] used
KPCA and obtained ’s to be the eigenvectors of the train-
ing images in a determined kernel space. In [27], ¢’s are
high-res image patches that form the atoms of an RIP ma-
trix learned from the training images. Finally, in [28], ¢’s
can be thought of as the columns of a linear mapping, which
maps low-res images to high-res ones.

Here we propose a fundamentally different approach to-
ward modeling high-res images. In our approach the high-
res image is modeled as a mass preserving mapping of a
high-res template image, I, as follows

In(x) = det(I+ Z a; Dv;(x))Io(x + Z a;v;(x))  (6)
7 K3
where I is the identity matrix, «; is the weight coefficient
of displacement field v; (i.e. a smooth vector field), and
Dv,(x) is the Jacobian matrix of the displacement field
v;, evaluated at x. The proposed method can be viewed
as a linear modeling in the space of mass-preserving map-
pings, which corresponds to a non-linear model in the im-
age space. Thus (through the use of mapping function

4877



p=0 p=025 p=05 p=075 p=1

Figure 1. Visualization of the morphing process for two face im-
ages by changing p from zero to one, each image is calculated
from det(Df,(x))1(f,(x)).

X + >, a;v;(x)) our modeling approach can also displace
pixels, in addition to change their intensities. In short, rather
than learning the linear combination of intensity values (as
most SFSR methods do) we seek to learn the mass preserv-
ing mappings that can be used to model the high-res training
images. In what follows, we formalize the proposed method
and show that such nonlinear modeling of images enhances
the information recovery process.

3. Transport-based SFSR

TB-SFSR utilizes the mathematics of optimal transport
(OT) in combination with subspace learning techniques to
learn a nonlinear model for the high-res images in the train-
ing set. The OT problem was initially raised in 1781 by
G. Monge, as the problem of transporting a given distribu-
tion of matter (e.g. pile of sand) into another. The Monge
problem is posed as how to minimize the work needed for
such transportation. More recently, OT has been used in
the image processing and computer vision communities for
image registration, image modeling, feature matching, etc
[13, 3, 23]. Here we use OT to model the variations in the
space of high-res images.

3.1. Training phase

We begin by clarifying that our description of the method
is given in continuous domain. The discretization of the
model is straightforward and is described subsequently.
Given a training set of high-res face images, I, ..., Ix :
Q — R with Q = [0, 1]? the image intensities are first nor-
malized to integrate to 1. This is done so the images can be
treated as distributions of a fixed amount of intensity val-
ues (i.e. fixed amount of mass). Next, the reference face is
defined to be the average image, Iy = % Zf\il I;, and the
optimal transport distance between the reference image and
the i’th training image, I;, is defined to be,

dor(Ip, I;) = minf/ If(x) — x|°1;(x)dx
Q
s.t. det(Df(x))Io(f(x)) = L;(x)(7)
where f : Q — () is a mass preserving transform from
I; to Iy, and Df is the Jacobian matrix of f. The work

from Brenier et al [5] shows that the optimization prob-
lem above is well posed and a unique solution exists. This

Figure 2. Visualization of the change f; applies to the underlying
grid of the image (a), the determinant of the Jacobian of f; (red
corresponds to > 1 and blue corresponds to < 1 values) (b), and
the corresponding displacement field u; (the contours show the
equipotential lines corresponding to this vector field)(c) , for the
images depicted in Figure 1.

unique transport function morphs image [, to image I; by
det(Df;(x))1o(f;(x)) = I;(x). Note that, f; changes the
underlying grid and the intensity values of image I simul-
taneously, hence it is truly a ‘morphing’. In addition, f;
provides a geodesic on the OT manifold [23] and points on
this geodesic can be parametrized by p € [0, 1] as,

£,(x) = (1— p)x+ pfi(x), ®)

and the morphing process can be visualized using
det(Df,(x))Io(f,(x)) by changing p from zero to one. Fig-
ure | shows the morphing process between two face images
as a function of p.

The optimal transport function f; is further decomposed
into the identity and the optimal displacement function,
w;(x): Q= Q,

fi(x) = x + u;(x). )

Note that the optimal displacement function u; quantifies
the amount of deviation from the identity. To further clar-
ify the concept of the optimal deformation and optimal dis-
placement functions, Figure 2 depicts the change f; exerts
on the grid of the image, the determinant of the Jacobian,
and the corresponding optimal displacement function for
the two images depicted in Figure 1.

Having optimal displacement fields u; for: =1,..., N
a subspace, V, is learned for these displacement fields.
Let v; for j = 1,..., M be a basis for subspace V. Then,
each optimal displacement field, u; can be represented as
a linear combination of basis displacement fields v;s via

u; = Zﬂil aj-vj. Here, an arbitrary combination of the
basis displacement fields can be used to construct an arbi-

trary deformation field,
M
fo (x) :x—i—Zajvj(x) (10)
j=1

which can then be used to construct a given image I (x) =
det(Dfy (x))Io(fo (x)). Hence, subspace V provides a gen-
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erative model for the high-res face image. In the test-
ing phase, we constrain the space of high-res images to
those that are generated by the learned model as I (x) =
det(Dfy (x))Io(fo(x)). As discussed below, numerous
techniques for linear (and nonlinear) subspace modeling ex-
ist [8, 26]. In the results reported below, we utilized the
usual principal component analysis (PCA) technique for
this task. That is, in this implementation of the modeling
approach, v; are the (top) eigenvectors of the covariance
matrix given by S; ; = [;,(u; — )" (u; — @)dx, where u
corresponds to the mean displacement field extracted from
the training set. Let e; and ~y; correspond to the eigenvectors
and eigenvalues of S. The modeling displacement maps are
then given by:

| N
v, = e;|k|ug. (11
ﬁ; [k]uy,

In our implementation, only the top M eigenvectors cor-
responding to 99% of the variations in the dataset are ex-
tracted during the training procedure.

3.2. Testing phase

Having the displacement space V', we constrain the space
of possible high-res solutions to those, which are repre-
sentable as I, for some o« € RM. Hence, for a degraded
input image, I;, and assuming that ¢(.) is known and fol-
lowing the MAP criteria we can write,

* 3 1
Iy = argmmjh,aiﬂfl—¢(Ih)H%+

A — det(Dfa) Io(fa) I3 (12)

where A is the regularizer, and f, (x) is defined in Eq (10).
Letting A to go to infinity (hard thresholding), the optimiza-
tion problem above can be written as,

*

. 1
at = argmmaiﬂfl—(ﬁ(fa)“g

s.t In(x) = det(Dfy(x))Io(fa(x)) (13)

Solving (13) with a gradient descent approach leads to a
local optima o*. Let agk) denote «; at k’th iteration of the

gradient descent and 1 (x) = det(Dfék)(x))Io(fék) (x)),
then the gradient descent update for «; can be written as
follows,

ol = oM _ 7 /Q (¢(tr(Dv;(x)adj(DE (x))) Io (£ (x))
+det(DEM (x)) (V1o (£ (%)), vi (x))))
(I (%) — L(x)dx (14)

where 7 is the step size, adj(.) denotes the adjoint matrix,
V is the gradient operator, (., .) represents the standard in-
ner product, and we assume that ¢(.) is a linear operator.
Finally, I~ represents the reconstructed high-res image.

3.3. Discretization and implementation

In order to solve the underlying (high-res) optimization
problem (7) we discretize the equation on the same grid
as the high-res image, and utilize the (constrained) gradi-
ent descent-based solution described in [13] (details om-
mited for brevity). In our Matlab [22] based implementa-
tion, the average time for morphing two 256 x 256 images is
4.2040.15sec. The outcome of the training procedure sum-
marized in equation (11) is thus a set of vector fields each of
the same size as the original high-res images. In the testing
phase, equation (13) is discretized at the same resolution as
the input low-res image with the operation ¢(/,) account-
ing for the operation that transfers the high-res model I
onto the space of images of the same size as the input low-
res image. The average time for construction of a high-res
image from a low-res input (regardless of the required mag-
nification) is about 4 minutes. The codes were executed
on a MacBook pro, with 2.9GH z Intel Core i7 and 8GB
1600M Hz DD RS3.

4. Results

In order to evaluate the ability of our TB-SFSR method
to reconstruct low-res images, we tested it on two face
datasets, namely the extended Yale Face Database B (abbr.
YaleB) and the AR face dataset. The YaleB face dataset con-
sists of frontal pose images of size 192 x 168 pixels from 28
human subjects under 64 different illumination conditions.
The cropped AR face dataset [ 18] contains 2600 images of
size 160 x 120 pixels from 100 different subjects under 13
different conditions and with two images for each condition.
In the experiments reported below we used 6 of these con-
ditions for which the facial components were clearly visible
(unobstructed). This resulted in a dataset consisting of 600
images from 100 subjects. The images are masked to re-
move background and hair. The degradation function, ¢(.),
is chosen to be a low pass filter combined with a downsam-
pling operator as described in [27].

Our results are computed using a standard ‘leave one
subject out’ cross validation procedure. That is, for both
datasets all images from one person are left out and our
TB-SFSR model (as well as the models to which we are
comparing to) is trained on the images from the remaining
subjects. We compare our TB-SFSR technique to a variety
of techniques that were previously described. In particu-
lar, we compare the results of our algorithm to those of a
kernel-PCA based SR [7], a sparse representation based SR
method [27], and a method based on learning a linear map-
ping from low-res images to the corresponding high-res im-
ages [28], as well as a simple cubic B-spline interpolation
(upsampling) procedure. We note that, with the exception
of the B-spline interpolation procedure, all comparables uti-
lize the learning-based mathematical framework described
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Figure 3. The images in the training set are morphed to the refer-
ence image and the optimal displacement fields are calculated for
every image (a). The basis displacement fields, v1, ..., vy, are
calculated as principal components of the optimal displacement
fields (b). Demonstration of face modeling using only two of the
displacement fields (c). Where, o; and o are the standard devia-
tion of the projected training displacement fields onto v; and v,
respectively.

above. In the experiments presented below, all images per-
taining to a subject are removed from the training proce-
dure, and all methods are trained and tested using exactly
the same data.

Figure 4 shows the comparison of the mean and stan-
dard deviation of the structural similarity (SSIM) index [25]
between the original high-res images and the reconstructed
images using each method at different scales of magnifica-
tion, with each scale corresponding to a reduction in size
of 2", for n = 2,3,4,5 (we'’re seeking to evaluate meth-
ods for constructing very low resolution images). The re-
sults for 32x magnification (n = 5) are not shown for the
AR dataset, because the low-res images were of the size
5 x 4 pixels and all methods failed to reconstruct mean-
ingful high-res images. From Figure 4, it can be seen that
our proposed method outperforms the other methods signif-
icantly for higher magnification scales (i.e. very low res-
olution image reconstruction). This is while our method
maintains the same reconstruction performance throughout

SSIM comparison on the YaleB face dataset

Il Cubic spline
llSparse—SFSR|
[ VLR-SFSR
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(a) Magnification Scale (2")

SSIM comparison on the AR face dataset
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2 3 4
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Figure 4. Mean and standard deviation of the structural simi-
larity (SSIM), measured for the Yaleb face dataset (a) and for
the AR face dataset (b) for different scales of magnification, be-
tween the reconstructed high res image and the original image us-
ing cubic spline, the method introduced in [27] (Sparse-SFSR), the
method introduced in [28](VLR-SESR), the method introduced in
[71 (KPCA-SFSR), and our method (TB-SFSR).

different magnification scales. From the statistical point
of view, the improvements provided by TB-SFSR are sig-
nificant: p-value< 0.01, using t-test statistics). Figures 5
and 6 show the SFSR reconstruction results of these meth-
ods for 32x and 16x magnifications and for the YaleB and
the AR face datasets, respectively. The performance of our
proposed method is comparable to the state of the art meth-
ods and outperforms them in the very low resolution set-
ting. The sample images shown in these figures are cho-
sen to have SSIM values close to the average SSIM (of our
method) reported in Figure 4 for these datasets.

Figure 7 shows similar result as Figures 5 and 6, as men-
tioned before, this time the test is done by leaving one in-
stance (one of the 64 face images for a subject) out and
repeating the experiment. It is clear that while our method’s
performance remains the same, performance of the meth-
ods introduced in [28] and [7] increases significantly. We
note that this is merely because the model has already seen
very similar images to the test image. In fact, in the ‘leave
one instance out’ (as opposed to leave one subject out) situ-
ation a nearest neighbor search in the high-res training data
can provide comparable, if not better, results to those of the
mentioned methods. Figure 8 shows the nearest neighbor
images in the high-res training dataset for the low-res test
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Figure 5. SFSR experiment with ‘leave one subject out’ training the YaleB face dataset (32x magnification). The degraded image
(6 x 5pixels)(a), high-res image reconstructed using cubic spline (b), the method introduced in [27] (c), the method introduced in [28](d),
the method introduced in [7] (e), TB-SFSR (f), and the original high-res image (g).

SSIM=0.36 SSIM=0.33 SSIM=0.71 SSIM=0.45 SSIM=0.79 SSIM=1

§999

SSIM=0.38 SSIM=0.35 SSIM=0.89 SSIM=0.46 SSIM=0.81

SSIM=0.38 SSIM=0.34 SSIM=0.79 SSIM=0.57 SSIM=0.82 SSIM=1

(a) (b) (©)

Figure 6. SFSR experiment with ‘leave one subject out’ training for the AR face dataset (16x magnification). The degraded image
(11 x 8pixels)(a), high res image reconstructed using cubic spline (b), the method introduced in [27] (c), the method introduced in [28](d),
the method introduced in [7] (e), TB-SFSR (f), and the original high-res image (g).

(d) (e) ) (2
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images in Figure 7. The reconstructed images are obtained
from, I* = argmin; _ 3|1 — o(1;)[3.

Finally, we propose an intuitive explanation on why the
transport-based method is more effective. Unlike all other
methods described to date, our transport-based method not
only compares intensity values between images in modeling
the problem, but also the location of the intensities. Note
that, images of faces (and other deformable objects) dif-
fer from each other not only due to differences in appear-
ance (i.e. tone and texture) of their parts, but also due to
the different locations of these parts for different individ-
uals. Hence, trying to model the displacement of parts by
only taking the co-variance structure of intensities on a fixed
grid would lead to high variances at each pixel. Therefore,
the nonlinear model we use is more effective in capturing
the real variations in appearance of the data. This is shown
by plotting the cumulative energy content for the principal
components of the Euclidean embedding (signal space) and
the transport embedding. Figures 9 and 10 show the cumu-
lative energy content of the principal components as a func-
tion of the number of principal components in the YaleB
and AR datasets, respectively. It can be seen that the vari-
ations in the datasets are captured with very few principal
components in the transport space.

5. Summary and Discussion

We have described a new learning-based method for re-
constructing high resolution estimates from single frame
low resolution images. Our method, denoted as transport-
based SFSR, employs an optimal transport formulation to
derive a facial appearance model from training data, with-
out the need for the definition of correspondence landmarks.
In contrast to previously described SFSR methods, which
seek to reconstruct a high resolution as a linear combination
of ‘basis’ image patches, our approach utilizes a transport-
based mathematical model for the entire facial region of in-
terest. The model is non linear, and Lagrangian (in PDE
parlance) in the sense that it compares intensities at differ-
ent image coordinates. Results computed using two well-
known, publicly available, image databases show that the
reconstruction capabilities of our transport-based approach,
especially for very high magnification tasks (e.g. 8 or 16
times), are comparable and superior to other state of the
art methods [28, 7, 27] in unsupervised settings (where the
training phase does not include data from test subjects).

We note that the technique described here is closely re-
lated to the linear optimal transport framework described in
[23]. In fact, our technique can be seen as a PCA-based
facial appearance model constructed on the linear optimal
transport embeddings produced by the method described in
Wang et al. [23]. As such, the model will completely re-
cover, up to interpolation and derivative estimation errors,
any image in the training set when all eigenvectors corre-

SSIM=0.59 SSIM=1

SSIM=0.87 SSIM=1

(a)

Figure 8. Nearest neighbor reconstruction with a ‘leave one in-
stance out’ training data for the same images as in Figure 7. The
degraded image (a), the nearest neighbor in the high-res training
set (b), and the original image (c). We clarify that in these results
the training set contains all but one (the test image) of the instances
from a particular person.

Percentage variations captured by principal components for YaleB dataset
1 —

o
©

Percentage of
captured variations
o
b

—Signal-space
-- Transport-space
40 50

20 0
Number of principal components
Figure 9. Percentage variations captured by the principal compo-
nents in the YaleB dataset, in the image space and in the transport-
based.

sponding to nonzero eigenvalues are used in the model re-
construction. The interpolation errors will be introduced
given the necessity to differentiate and interpolate data in
the reconstructed model 6.

Finally, we mention that the PCA-based modeling pro-
cedure described here is one of many subspace learning
techniques that can be used for designing a transport-based
super-resolution approach. Given the ‘localized’ nature of
the problem a subspace learning model which is more spa-
tially sparse (see for example [26]) could aid the model-
ing procedure while at the same time simplifying the op-
timization problem given that the warping of non overlap-
ping parts (e.g eyes) could be computed separately. In the
future, we also wish to study the ability of the method to
reconstruct facial images which are partially obstructed. To
that end, our transport-based approach could be modified
to include data from only specified regions of interest, for
example. These and other topics will be subject of future
work.
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Figure 10. Percentage variations captured by the principal compo-
nents in the AR dataset, in the image space and in the transport-
based.
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