
A Dynamic Convolutional Layer for Short Range Weather Prediction

Benjamin Klein, Lior Wolf, Yehuda Afek
The Blavatnik School of Computer Science, Tel Aviv University

Deep learning and specifically Convolutional Neural Networks (CNNs) [1]
are becoming increasingly popular in solving various computer vision ap-
plications. What sets CNNs apart from other neural networks is the use
of the convolutional layer. This layer computes the output feature maps
by convolving the feature maps of the previous layer with a set of filters
which are the only parameters of the convolutional layer. Motivated by the
success of CNNs, we decided to examine their performance in the task of
short range weather prediction. In this task, one receives a sequence of rain
radar images (Figure 2) such that each two consecutive images were taken
10 minutes apart and the goal is to predict the next image in the sequence.
Observing that a radar image in the sequence can be usually approximated
as a translation of the previous image in the sequence, suggested the need
for a new layer that will translate the last image in the sequence according
to the motion behavior of the all sequence.

Motivated by this observation, we present a new deep network layer
called the "Dynamic Convolutional Layer", which generalizes the convolu-
tional layer. Similar to the convolutional layer, the dynamic convolutional
layer takes the feature maps from the previous layer and convolves them
with filters. In contrast to the convolution layer, the dynamic convolution
layer receives two inputs. The first input is the features maps from the pre-
vious layer and the second is the filters. The feature maps are obtained from
the input by following a sub-network A. The filters are the result of applying
a separate convolutional sub-network B on the input. The output of the layer
is computed by convolving the filters across the features maps from the pre-
vious layer in the same way as in the convolution layer but here the filters
are a function of the input and therefore vary from one sample to another
during test time. The whole system is a directed acyclic graph of layers and
therefore the training is done by using the back-propagation algorithm [2].

Forward Pass In the forward pass, network A computes the feature maps
that will be given to the dynamic convolution layer as the first input and the
separated sub convolution network B computes the filters that will be given
to the dynamic convolution network as the second input (Figure 1). Let xt

i
be the i-th input feature map of sample t, let kt

i j be the ij input kernel of
sample t and let yt

j be the j-th output feature map of sample t, then in the
forward pass of the dynamic convolution network, the output feature maps
are calculated as follows:

yt
j = ∑

i
kt

i j ∗ xt
i

Notice that in contrast to the conventional convolution layer, in the dynamic
convolution layer every sample has a different kernel kt

i j.

Figure 1: The dynamic convolutional layer. Layer k+1 is computed by convolving the filters across the feature maps in the k layer. The filters themselves
are the result of applying a convolutional network on the input.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Figure 2: A sequence of 4 radar images from the Tel Aviv Dataset. Each
two consecutive images were taken 10 minutes apart.

Backward Pass In the backward pass, the dynamic convolution layer com-
putes the gradient of the loss function l with respect to xt

i :

∂ l
∂xt

i
= ∑

j

(
∂ l

∂yt
j

)
∗
(
kt

i j
)

The values of the gradient ∂ l
∂xt

i
are passed to the layer in network A that

produced xt
i . Additionally, and similarly to the conventional convolutional

layer, the gradient of the loss function with respect to kt
i j is computed:

∂ l
∂kt

i j
=

(
∂ l

∂yt
j

)
∗
(
x̃t

i
)

In contrast to the convolution layer, kt
i j are not parameters of the layer

- they are a function of the input t that are passed from a previous layer in
network B. Therefore, the values of the gradient ∂ l

∂kt
i j

are passed to the layer

that computed kt
i j as part of the back-propagation algorithm.

[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[2] David E. Rumelhart, Geoff E. Hinton, and R. J. Wilson. Learning rep-
resentations by back-propagating errors. pages 533–536, 1986.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

