
A Dynamic Convolutional Layer for Short Range Weather Prediction

Benjamin Klein, Lior Wolf and Yehuda Afek
The Blavatnik School of Computer Science

Tel Aviv University
beni.klein@gmail.com, wolf@cs.tau.ac.il, afek@post.tau.ac.il

Abstract

We present a new deep network layer called “Dynamic
Convolutional Layer” which is a generalization of the con-
volutional layer. The conventional convolutional layer uses
filters that are learned during training and are held constant
during testing. In contrast, the dynamic convolutional layer
uses filters that will vary from input to input during testing.
This is achieved by learning a function that maps the input
to the filters. We apply the dynamic convolutional layer to
the application of short range weather prediction and show
performance improvements compared to other baselines.

1. Introduction
Deep learning and specifically Convolutional Neural

Networks (CNNs) [16] are becoming increasingly popular

in solving various computer vision applications. What sets

CNNs apart from other neural networks is the use of the

convolutional layer. This layer computes the output feature

maps by convolving the feature maps of the previous layer

with a set of filters. These filters are the only parameters

of the convolutional layer and are learned during training,

typically by using the back-propagation algorithm.

In recent years, CNNs have achieved state-of-the-art re-

sults on a variety of challenging problems such as: object

recognition, objection localization, cancer detection, face

recognition and scene labelling. [15, 5, 24, 25, 26, 11].

Motivated by the success of CNNs, we decided to examine

their performance in the task of short range weather pre-

diction. In this task, one receives a sequence of rain radar

images (Figure 1), one image taken every 10 minutes, and

the goal is to predict the next image in the sequence. While

we understand the critical role of the convolutional layer in

recognition problems, we think that a different network ar-

chitecture could be more suitable for the task of short range

weather prediction. Specifically, observing that a radar im-

age in the sequence can be usually approximated as a trans-

lation of the previous image in the sequence, suggested the

need for a new layer that will translate the last image in

the sequence according to the motion behavior of the all se-

quence.

Motivated by this observation, we present a new deep

network layer called the ”Dynamic Convolutional Layer”,

which generalizes the conventional convolutional layer.

Similar to the convolutional layer, the dynamic convolu-

tional layer takes the feature maps from the previous layer

and convolves them with filters. The novelty lies in that the

filters of the dynamic convolutional layer are not the param-

eters of the layer, rather they are obtained as the output of a

subnetwork of arbitrary depth that maps the input to a set of

filters (Figure 3).

In this work, we present the dynamic convolutional layer

and use it for the task of short range weather prediction.

We compare the results to other baselines, including Con-

volutional Neural Network that does not use the dynamic

convolutional layer. We show that by using the new layer,

we gain improvement in performance compared to the other

baselines, including the conventional CNN.

2. Related Work
In recent years, a number of papers suggested adapta-

tions to the convolutional layer. In [17], Lin et al. sug-

gested a novel deep network structure called ”Network In

Network” (NIN). This structure replaces the linear filters in

the conventional convolutional layer with a multilayer per-

ceptron. Using this novel structure, they achieved state-of-

the-art performance on CIFAR-10 and CIFAR-100. This

work differs from ours in two major ways: first, it replaces

the convolutions with a multilayer perceptron. Second, the

new blocks are entered sequentially to replace the convolu-

tional layers, i.e., the new block has the same input layer

and the same output layer as the convolutional layer it re-

places. In our case, we adhere to the convolution operator,

which is suitable to the image synthesis tasks that we focus

on (NIN is employed for classification). The dynamic con-

volutions are computed using separate subnetworks that can

take the output of the arbitrary previous layer as input.

In parallel to our work, Cohen et al. [6] present a general-

ization of CNNs. This generalization adds masking weights

1

Figure 1. A sequence of 4 radar images from the Tel Aviv Dataset before the preprocessing. Each two consecutive images were taken 10
minutes apart.

Figure 2. A sequence of 4 radar images from the Davenport Dataset after the preprocessing. In the preprocessing, a constant color

transformation function was applied on every image, in order to transform the cloud intensity coded by a color map to image intensities.

to the similarity layers that generalize the conventional con-

volutional layer. The weights are learned during optimiza-

tion and not computed while evaluating new samples, in

contrast to our work. In addition, whenever the similarity

layer computes linear correlations and not functions of dis-

tances, the weights can be simply absorbed into the filters.

In our case, the dynamic nature of the filters cannot be ex-

pressed by conventional networks.

In each dynamic convolutional layer, the interaction be-

tween the input from the previous layer and the filter ob-

tained from another layer is of a multiplicative nature. In the

literature, multiplicative interactions appear when comput-

ing similarities between two images [1, 9] employing au-

toencoders and for learning interactions of two consec-

utive frames for action recognition [27] employing re-

stricted Boltzmann machines. Multiplicative interactions

were also used to link hidden variables with the network’s

input [20, 19], where the hidden variables are eliminated us-

ing marginalization. In our networks, both paths leading

to the multiplicative interaction are obtained from the net-

work’s input in a feedforward manner. The input is not split

into two parts that correspond to two images or two frames,

each propagated separately.

Multiplicative interactions also appear as part of the

Sigma-Pi units [21], in which the inputs of the previous

layers are multiplied to create non-linear interactions. In

contrast to our work, this very early contribution considers

direct interactions of different elements from the same in-

put layer and is explored in the context of simple artificial

neural networks. More references to previous work on mul-

tiplicative interactions can be found in [18].

Weather prediction As an application, we employ

weather surveillance radar images in order to make short

term forecasts of future location and intensity of rain and

snow. Such predictions supports both casual usages, such

as helping users decide whether to ride their bike to school,

and for society-level emergency alerts such as predicting

flash floods. In between, the output predictions can be

used routinely to predict traffic and be integrated into air-

port weather systems.

The literature on the subject seems to be much more

focused on the physical properties of weather radars [28],

on models for calibrating their output with land measure-

ments [3], and on integrating the obtained data, using com-

mercial products, with other weather modalities [7]. While

it is not clear how commercial products work, it is apparent

that the usage of recent advances in computer vision to the

task of rain weather prediction is still largely lacking.

3. Dynamic Convolution Layer

In this section, we describe the dynamic convolution

layer, which is a generalization of the convolution layer.

The conventional convolution layer is explained is 3.1 and

the dynamic convolution layer is explained in 3.2. The dis-

cussion explores how the two layers differ from one another

in terms of input, output, forward pass and backward pass.

3.1. The Conventional Convolution Layer

The convolution layer receives a single input - the feature

maps from the previous layer. The layer computes feature

maps as its output by convolving filters across the feature

Figure 3. The dynamic convolutional layer. Layer k + 1 is computed by convolving the filters across the feature maps in the k layer. The

filters themselves are the result of applying a convolutional network on the input.

maps from the previous layer. These filters are the parame-

ters of the convolution layer and are learned during training

by using back-propagation [22]. During testing, they are

held fixed and do not change from one sample to another.

Forward Pass The learning is usually done in batches of

T samples. We shall denote by xt
i, the i-th input feature map

of sample t and by ytj the j-th output feature map of sam-

ple t. The filters would be denoted by kij . In the forward

pass of the convolutional layer, the output feature maps are

calculated using the convolution operator (denoted by *):

ytj =
∑
i

kij ∗ xt
i (1)

Backward Pass In the backward pass, the convolution

layer computes the gradient of the network’s loss function l
with respect to xt

i:

∂l

∂xt
i

=
∑
j

(
∂l

∂ytj

)
∗(kij) (2)

Where * is the convolution with zero padding. As part

of the back-propagation algorithm, the values of the gradi-

ent ∂l
∂xt

i
are then passed to the previous layer, the one that

computed xt
i. Additionally, the gradient of the loss function

with respect to kij is computed:

∂l

∂kij
=

1

T

∑
t

(
∂l

∂ytj

)
∗ (x̃t

i

)
(3)

Where x̃t
i is the row/column flipped version of xt

i. After

computing ∂l
∂kij

, the parameters kij of the layer are updated

by using gradient descent:

kij = kij − α · ∂l

∂kij
, (4)

where α is the learning rate.

3.2. The Dynamic Convolution Layer

In contrast to the convolution layer, the dynamic convo-

lution layer receives two inputs. The first input is the fea-

tures maps from the previous layer and the second is the

filters. The feature maps are obtained from the input by

following a sub-network A. The filters are the result of ap-

plying a separate convolutional sub-network B on the input.

The output of the layer is computed by convolving the fil-

ters across the features maps from the previous layer in the

same way as in the convolution layer but here the filters are

a function of the input and therefore vary from one sample

to another during test time. The whole system is a directed

acyclic graph of layers and therefore the training is done by

using the back-propagation algorithm.

Forward Pass In the forward pass, network A computes

the feature maps that will be given to the dynamic convo-

lution layer as the first input and the separated sub convo-

lution network B computes the filters that will be given to

the dynamic convolution network as the second input (Fig-

ure 3). Let xt
i be the i-th input feature map of sample t, let

ktij be the ij input kernel of sample t and let ytj be the j-th

output feature map of sample t, then in the forward pass of

the dynamic convolution network, the output feature maps

are calculated as follows:

ytj =
∑
i

ktij ∗ xt
i (5)

Notice that in contrast to the conventional convolution

layer, in the dynamic convolution layer every sample has a

different kernel ktij .

Backward Pass In the backward pass, the dynamic con-

volution layer computes the gradient of the loss function l
with respect to xt

i similarly to before:

Figure 4. The architecture of the network. Network B is a sub-network which computes the filters (H1 and V1) used by the dynamic

convolution layers. SH1 is the result of applying a softmax function on H1 and SV1 is the result of applying a softmax function on V1.

DC1 is a dynamic convolution layer that takes the last image in the sequence and convolves it with SV1. DC2 is a dynamic convolution

layer that is takes DC1 and convolves it with SH1.

Figure 5. The architecture of the network B for the Whole Image Synthesis. C1, C2 and C3 are conventional convolution layers and M1,

M2 and M3 are max-pooling layers. After each max-pooling layer, we apply tanh nonlinearity activation function. H1 and V1 are each

connected to M3 by a fully connected layer.

∂l

∂xt
i

=
∑
j

(
∂l

∂ytj

)
∗(ktij) (6)

The values of the gradient ∂l
∂xt

i
are passed to the layer in

network A that produced xt
i. Additionally, and similarly to

the conventional convolutional layer, the gradient of the loss

function with respect to ktij is computed:

∂l

∂ktij
=

(
∂l

∂ytj

)
∗ (x̃t

i

)
(7)

In contrast to the convolution layer, ktij are not param-

eters of the layer - they are a function of the input t that

are passed from a previous layer in network B. Therefore,

the values of the gradient ∂l
∂kt

ij
are passed to the layer that

computed ktij as part of the back-propagation algorithm.

4. Whole Image Synthesis
The whole image synthesis method receives the four

250×250 radar images as an input and outputs the estimated

next image in the sequence. The estimation is performed us-

ing a DNN that contains the dynamic convolution layer. In

practice, the prediction contains the 200×200 center patch

of the next image in sequence, since the boundaries are sig-

nificantly affected by clouds that are not seen in the previous

radar images.

Network Architecture The overall architecture is shown

in Figure 4. The four radar images of size 250×250 are

given as a four channel input to a conventional convolu-

tional layer (C1) with 32 filters of size 7×7×4. The re-

sulting 32 feature maps are then passed to a max-pooling

layer (M1) which takes the max over 2×2 spatial blocks

with a stride of 2. This is followed by another conventional

convolutional layer (C2) with 32 filters of size 7×7×32.

The resulting 32 feature maps are then passed to another

max-pooling layer (M2) which takes the max over 2×2
spatial blocks with a stride of 2. This is followed by an-

other conventional convolutional layer (C3) with 32 filters

of size 7×7×32. The resulting 32 feature maps are then

passed to another max-pooling layer (M3) which takes the

max over 2×2 spatial blocks with a stride of 2. A fully

connected layer transforms the values in (M3) into a 1D
horizontal vector H1 of size 1×41 and a second fully con-

nected layer transforms the values in (M3) into 1D vertical

vector V 1 of size 41×1. Softmax operation is applied on

V 1 and on H1 resulting in the vectors SV 1 and SH1. The

dynamic convolution layer is now being used for the first

time. The last radar image in the sequence (last in time

manners) is taken and convolved with the filter SV 1 by us-

ing the dynamic convolution layer (DC1). The resulting

feature map is now introduced as an input to a second dy-

namic convolution layer (DC2) and is convolved with the

filter SH1. The 200×200 center patch of DC2 is taken us-

ing a crop layer CROP1 and is passed during training, to

an Euclidean loss layer with the true 200×200 center patch

of the next sequence. The tanh nonlinearity is used after

each max-pooling layer.

Intuition The network architecture gives meaning to the

vectors SV 1 and SH1. Each one of these two vectors can

be seen as a vector of probabilities - they are positive and

sum to 1 (the result of applying a softmax function). Since

SV 1 is being used as a vertical filter that the last image in

the sequence is being convolved with, it preforms a trans-

lation in the vertical axis. Similarly, SH1 is a horizon-

tal filter that the resulting feature map is being convolved

with, thereby performing translation in the horizontal axis.

Therefore, the network learns to map the input sequence of

4 frames and produce probability vectors that predict the

proper translation in the horizontal and vertical axes that

would transform the last image in the sequence to the next,

unseen one.

5. Patch by Patch Synthesis
The whole image synthesis method works well in cases

where all the objects in the sequence are translated by the

same amount. In order to deal with more complicated scene

motions, a patch by patch synthesis is presented next. In

this method, a DNN is trained on patches (small image re-

gions) of the radar sequence. The input of this network is a

sequence of four radar images of size 70×70 and its output

is the 10×10 center patch of those patches for the next im-

age in the sequence. In order to compute the next image in

the sequence, the DNN is applied in a sliding window fash-

ion. This sliding window approach has been applied suc-

cessfully in the past, such as in the application of detecting

mitosis in breast histology images [5].

Network Architecture The network architecture is very

similar to the network architecture of whole image synthesis

and therefore we only described the difference between the

two. Due to the smaller size of the input, we remove the

last convolution layer (C3) and the last max-pooling layer

(M3). Additionally, the crop layer (CROP1) takes the

10×10 center patch of (DC2).

6. Results
The dynamical convolution layer was developed, tested

and compared to alternatives on three very large datasets for

short range weather prediction. We describe the data sets

in Section 6.1 and the preprocessing steps in Section 6.2.

Training and implementation details are described in 6.3.

The methods that we compared ourselves to are described in

6.4. Finally, a comparison of the accuracy of all the methods

on the three datesets is done in 6.5.

6.1. Datasets

We are using three data sets. The first dataset contains

radar images that were taken in Tel Aviv, Israel, the second

dataset contains radar images that were taken in Davenport,

Iowa and the third dataset contains radar images that were

taken in Kansas City, Missouri. Each dataset was split into

train, validation and test sets such that each set contains se-

quences that were taken on a different range of years - in

order to prevent contamination. On many days, many se-

quences are empty or nearly empty. These sequences are

easy to predict and are therefore filtered out from the bench-

mark.

All three datasets were subsampled to create manage-

able experiments. The three training sets contain 32, 000 se-

quences each, the validation sets contains 4, 800 sequences

per radar dataset and each test set contains 3, 200 sequences.

6.2. Preprocessing

The radar images of the Tel Aviv dataset contain a map as

a background image (Figure 1). In order to build meaning-

ful models, background subtraction is first applied to every

image in this dataset.

Next, for all three datasets, we apply a constant color

transformation function on every image, in order to trans-

form the color maps depicting the cloud intensity to im-

age intensities (Figure 2). Note that simply applying a gray

scale transformation to the image would not produce the de-

sirable results since the colorbar of the radar images is not

monotonic under the gray scale transformation. We then

crop and scale the image to 250× 250 pixels.

6.3. Implementation Details

The Dynamic Convolutional Layer was implemented us-

ing the open source Caffe library [14]. All the weights in

the DNN were initialized according to the Xavier initializa-

tion [13]. The training was done using stochastic gradient

descent (SGD) with a learning rate of 0.001 and a momen-

tum of 0.9.

6.4. Baseline Methods

The dynamic convolutional layer was compared to sev-

eral alternative techniques that are described next. Notice

Method Tel Aviv Dataset Davenport Dataset Kansas City Dataset

Last Frame 20.059±0.536 258.818±2.552 241.392±2.975

Global Motion Estimator 16.837±0.496 173.402±1.547 179.953±2.065

Patch Based Linear Regression 13.002±0.435 164.854±1.377 160.489±1.682

Patch Based CNN 11.480±0.431 105.242±0.839 101.880±1.042

Whole Image Dynamic Convolution Network 12.340±0.461 117.316±0.929 118.402±1.174

Patch Based Dynamic Convolution Network 11.114±0.412 101.983±0.802 98.790±0.995

Table 1. Results. Comparison of our models with competitive methods on three datasets.

that linear regression and the CNN models were not used

for the entire image, only for patches. This is due to the

larger output size of the entire image approach that would

have dramatically increased the number of parameters in the

model, making these models less feasible.

Last Frame The prediction and the input sequence have

strong correlations and therefore one can simply take the

last frame as the prediction. Since the last frame is expected

to be the closest to the predicted frame, this baseline already

performs rather well.

Global Motion Estimator A global motion vector

(dx, dy) is inferred using a black-box motion estimator,

namely, opencv’s Keypoint Based Motion Estimation func-

tion [4]. The last image is then translated according to

this vector and the result is the prediction. Notice that this

method sometimes fails when the motion is not estimated

successfully for various reasons.

Patch Based Linear Regression A linear regression

model that transforms a sequence of four radar image

patches of 70×70 into the 10×10 center patch of the next

image patch in the sequence is learned on the training set.

The 200×200 central regions of the next image in the se-

quence is then computed by applying the linear regression

model in a sliding window fashion.

Patch Based Convolutional Neural Network A CNN

model that transforms a sequence of four radar image

patches of 70×70 into the 10×10 center patch of the next

image patch in the sequence is learned on the training set.

The next image in the sequence is computed by repeatedly

applying the network in a sliding window fashion. The ar-

chitecture of the CNN is as follows: The four radar image

patches of size 70×70 are given to a conventional convolu-

tional layer (C1) with 32 filters of size 7×7×4 . The result-

ing 32 feature maps are then passed to a max-pooling layer

(M1) which takes the max over 2×2 spatial blocks with a

stride of 2. This is followed by another conventional con-

volutional layer (C2) with 32 filters of size 5×5×32. The

Figure 6. The validation error rate on the Kansas City validation

set as a function of the epoch. The x-axis is the epoch and the

y-axis is the Euclidean loss on the validation set. Shown are the

error of the Patch Based CNN (green) and the error of the Patch

Based Dynamic Convolution Network (Red).

resulting 32 feature maps are then passed to another max-

pooling layer (M2) which takes the max over 2×2 spatial

blocks with stride of 2. This is followed by another con-

ventional convolutional layer (C3) with 32 filters of size

3×3×32. The resulting 32 feature maps are then passed

to a fully connected layer F1 that produces a vector with

1600 entries. Finally, the 1600 entries are passed to a fully

connected layer F2 that produces a vector with 100 entries,

which is the network’s prediction.

The specific network architecture was chosen in a trial

and error fashion to obtain the best performance on the

validation set. We examined around 20 architectures both

smaller and bigger and chose the best performing network

for this comparison.

6.5. Accuracy Comparison

For each method and for each each sample t, the

(squared) Euclidean loss is computed:

200∑
i=1

200∑
j=1

(ŷtij − ytij)
2 , (8)

where ŷt denotes the predicted image. The mean results,

as well as the standard errors (SE) are presented in Table

Last Frame

Global Motion
Estimator

Patch Based
Linear Regression

Whole Image
Dynamic CNN

Patch Based CNN

Patch Based
Dynamic CNN

Figure 7. Each row represents a model and each column represents a sequence. In each image, the red color represents the ground truth

- the real next radar image in the sequence, the green color represents the prediction according to the specific model and the yellow color

represents the overlapping between the prediction and the ground truth.

1. All differences seen in the Table were verified to be sta-

tistically significant at a significance level of 0.01 using a

paired t-test, except for the difference between Patch Based

CNN and Patch Based Dynamic Convolution Network on

the Tel Aviv dataset. As can be seen, the Tel-Aviv dataset

has the smallest error. This is due to the scarcity and sparse-

ness of rain clouds over Israel in comparison to the two US

locations. Among the methods, the patch based dynamic

CNN provides the lowest error rates in all three datasets.

The next best performing method is the patch based con-

ventional CNN and the following best performing method

is the whole image dynamic CNN. The linear regression and

the global motion estimators do not perform as well as the

CNN based methods.

Additionally, due to the fact that the Tel-Aviv dataset

lacks rain clouds , we compute the performance of the Tel-

Aviv dataset Patch Based CNN and Patch Based Dynamic

CNN models that were learned on the US dataset. As a re-

sult, the Euclidean loss of the Patch Based Dynamic CNN

improved to 10.766±0.414 and the Euclidean loss of Patch

Based CNN degraded to 11.708± 0.536.

The convergence of the dynamic CNN method follows

a typical pattern. The error rate of the network starts

higher than the analogous conventional CNN, but after a

few epochs the error rate drops sharply and remains lower

than its counterpart. A typical run is depicted in Figure 6.

Overall, the convergence of the patch based dynamic CNN

is much faster than the patch based conventional CNN. In

order to supply a fair comparison of the convergence, the

running time of a single epoch was computed for the Patch

Based Dynamic CNN and Patch Based CNN by taking the

mean of 31 epochs. The running time of a single epoch in

the Patch Based CNN is 189.935 ± 3.950 and in the Patch

Based Dynamic CNN is 233.677±10.331. Therefore, a sin-

gle epoch in the Patch Based Dynamic CNN is a bit slower

than in the Patch Based CNN, but the overall convergence

of the Patch Based Dynamic CNN is faster than the Patch

Based CNN.

Examples of radar image sequences and next frame pre-

diction for every model are shown in Figure 7.

7. Discussion
The current emphasis in the recent deep learning liter-

ature is on muticlass classification. However, deep learn-

ing networks can be used for super resolution [10], blind-

image deconvolution [23], noise removal, and other image

processing tasks for which the output is an image. Such

domains can benefit from incorporating dynamic filters that

are constructed based on the input image.

In addition, deep learning systems that combine recogni-

tion with detection and segmentation, such as the semantic

segmentation line of work [2, 8] could also benefit from dy-

namic filters. Such filters would allow the system to adapt

to multiple scenarios and handle a wider variety of scenes.

While not directly related to the dynamic convolutional

layer itself, the error signal which we propagate stems from

the Euclidean error. This might be suboptimal for image

synthesis applications since it does not take into account

the structure of images. For example, blurry images, which

are not visually appealing, sometimes get lower error rates

than more naturally looking but shifted images. A possible

way to address this is by incorporating graphical models on

top of the learned convolutional neural networks, e.g., [12].

Lastly, we show that a network that contains a dynamic

convolution layer outperforms a network which does not.

Since the dynamic layer incorporates a subnetwork for com-

puting the filters, the overall network becomes more com-

plex. To be fair, we tried to make the baseline network

deeper than the proposed one and have tested multiple alter-

natives, learning rates, and regularization schemes in order

to obtain the the best performing baseline network. The pro-

posed network which is the one incorporating the dynamic

filter, was much easier to obtain. It is possible that the use

of more complex network components, such as the dynamic

convolutional layer, will ultimately lead to straightforward

network architectures.

Acknowledgments

This research is partly supported by a Microsoft Azure

Research Award.

References

[1] D. Alain and S. Olivier. Gated autoencoders with tied input

weights. In S. Dasgupta and D. Mcallester, editors, Proceed-
ings of the 30th International Conference on Machine Learn-
ing (ICML-13), volume 28, pages 154–162. JMLR Work-

shop and Conference Proceedings, May 2013.

[2] J. M. Alvarez, Y. LeCun, T. Gevers, and A. M. Lopez.

Semantic road segmentation via multi-scale ensembles of

learned features. In Proceedings of the 12th International
Conference on Computer Vision - Volume 2, ECCV’12,

pages 586–595, Berlin, Heidelberg, 2012. Springer-Verlag.

[3] L. Besson, C. Boudjabi, O. Caumont, and J. Parent du

Chatelet. Links between weather phenomena and char-

acteristics of refractivity measured by precipitation radar.

Boundary-Layer Meteorology, 143(1):77–95, 2012.

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[5] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmid-

huber. Mitosis detection in breast cancer histology images

with deep neural networks. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2013, pages

411–418. Springer, 2013.

[6] N. Cohen and A. Shashua. Simnets: A generalization of con-

volutional networks. arXiv preprint arXiv:1410.0781, 2014.

[7] C. G. Collier. Flash flood forecasting: What are the limits of

predictability? Quarterly Journal of the Royal Meteorologi-
cal Society, 133(622):3–23, 2007.

[8] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. Toward

real-time indoor semantic segmentation using depth informa-

tion. JMLR, 2014.

[9] A. Dehghan, E. Ortiz, R. Villegas, and M. Shah. Who do

i look like? determining parent-offspring resemblance via

gated autoencoders. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on, pages 1757–1764,

June 2014.

[10] C. Dong, C. Loy, K. He, and X. Tang. Learning a deep con-

volutional network for image super-resolution. In D. Fleet,

T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer
Vision ECCV 2014, volume 8692 of Lecture Notes in Com-
puter Science, pages 184–199. Springer International Pub-

lishing, 2014.

[11] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 35(8):1915–

1929, 2013.

[12] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. IEEE Transactions
on Pattern Analysis and Machine Intelligence, August 2013.

[13] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In International
Conference on Artificial Intelligence and Statistics, pages

249–256, 2010.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[17] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[18] R. Memisevic. Learning to relate images: Mapping units,

complex cells and simultaneous eigenspaces. CoRR, pages

–1–1, 2011.

[19] R. Memisevic and G. Hinton. Unsupervised learning of im-

age transformations. In Computer Vision and Pattern Recog-
nition, 2007. CVPR ’07. IEEE Conference on, pages 1–8,

June 2007.

[20] R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys. Gated

softmax classification. Advances in Neural Information Pro-
cessing Systems, 23:1–9, 2010.

[21] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. Paral-

lel distributed processing: Explorations in the microstructure

of cognition, vol. 1. chapter A General Framework for Par-

allel Distributed Processing, pages 45–76. MIT Press, Cam-

bridge, MA, USA, 1986.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Wilson. Learning

representations by back-propagating errors. pages 533–536,

1986.

[23] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf.

Learning to deblur. arXiv preprint arXiv:1406.7444, 2014.

[24] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

[26] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 1701–1708. IEEE, 2014.

[27] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convo-

lutional learning of spatio-temporal features. In Proceedings
of the 11th European Conference on Computer Vision: Part
VI, ECCV’10, pages 140–153, Berlin, Heidelberg, 2010.

Springer-Verlag.

[28] T. Weckwerth, C. Pettet, F. Fabry, S. Park, M. LeMone, and

J. Wilson. Radar refractivity retrieval: Validation and appli-

cation to short-term forecasting. Journal of Applied Meteo-
rology, 44(3), 2005.

