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Abstract
Regularizing images under a guidance signal has been

used in various tasks in computer vision and computational
photography, particularly for noise reduction and joint up-
sampling. The aim is to transfer fine structures of guidance
signals to input images, restoring noisy or altered struc-
tures. One of main drawbacks in such a data-dependent
framework is that it does not handle differences in structure
between guidance and input images. We address this prob-
lem by jointly leveraging structural information of guid-
ance and input images. Image filtering is formulated as
a nonconvex optimization problem, which is solved by the
majorization-minimization algorithm. The proposed algo-
rithm converges quickly while guaranteeing a local mini-
mum. It effectively controls image structures at different
scales and can handle a variety of types of data from differ-
ent sensors. We demonstrate the flexibility and effectiveness
of our model in several applications including depth super-
resolution, scale-space filtering, texture removal, flash/non-
flash denoising, and RGB/NIR denoising.

1. Introduction and Background
Many tasks in computer vision and computational pho-

tography can be formulated as ill-posed inverse problems,
and thus theoretically and practically, require regulariza-
tion. In the classical setting, this is used to obtain a
smoothly varying solution and/or ensure stability [4]. Re-
cent work on joint regularization (or joint filtering) [10, 15,
33] provides a new perspective on the regularization pro-
cess, with a great variety of applications including stereo
correspondence [28, 34], optical flow [28], joint upsampling
[8, 15, 20, 25], dehazing [10], noise reduction [27, 33], and
texture removal [35]. The basic idea of joint regularization
is that the structure of a guidance image is transferred to
an input image, e.g., for preserving sharp structure transi-
tions while smoothing the input image. It assumes that the
guidance image has enough structural information to restore
noisy or altered structures in the input image.

Joint regularization has been used with either static or
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dynamic guidance images. Static guidance regularization
(e.g., [10]) provides an output image by modulating the in-
put image with an affinity function that depends on the sim-
ilarity of features in the guidance signal. This static guid-
ance is fixed during the optimization. It can reflect inter-
nal properties of the input image itself, e.g., its gradient
[15, 26], or be another signal aligned with the input im-
age, e.g., a near infrared (NIR) image [33]. This framework
determines the structure of the output image by referring
to that of the guidance image only, and does not consider
structural (or statistical) dependencies and inconsistencies
between input and guidance images. This is problematic,
especially in the case of data from different sensors, e.g.,
depth and color images. Dynamic guidance regularization
(e.g., [35]) uses an affinity function obtained from the regu-
larized input image. It is assumed that the affinity between
neighboring pixels can be determined more accurately from
already regularized images, than from the input image it-
self [2, 35]. This method is inherently iterative, and dy-
namic guidance (the regularized input image, i.e., a poten-
tial output image) is updated at every step. In contrast to
static guidance regularization, dynamic guidance regular-
ization does not use static guidance and takes into account
of the properties of the input image. Data-dependent static
guidance is needed to impose structures on the input im-
age, especially when the input image is not enough in it-
self to pull out reliable information, e.g., joint upsampling
[8, 15, 20, 25].

We present a unified framework for image filtering tak-
ing advantage of both static and dynamic guidances. We
address the aforementioned problems by fusing appropri-
ate structures of static and dynamic guidance images, rather
than unilaterally transferring structures of guidance images
to the input image. To encourage comparison and future
work, our source code is available at our project webpage1.

2. Related Work
Static or dynamic guidance can be implicit or explicit.

Implicit regularization stems from a filtering framework.
The input image is filtered using a weight function that de-
pends on the similarity of features in the guidance image
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Figure 1. Comparison of static and dynamic guidance regularization methods. Given (a) a HR color image, (b) a LR depth map is upsampled
(⇥8) by our model using (c) static guidance only, (d) dynamic guidance only, and (e) joint static and dynamic guidance. See Sec. 4.1 for
details. (Best viewed in color.)

[15]. In this way, the structure of the guidance image is
transferred to the input image. The bilateral filter (BF) [30],
guided filter (GF) [10], and weighted median filter (WMF)
[20] have been successfully adapted to static guidance reg-
ularization. Two representative filtering methods using dy-
namic guidance are iterative nonlocal means (INM) [2] and
the rolling-guidance filter (RGF) [35]. They share the same
filtering framework, but differ in that INM is for preserving
textures during noise reduction, while the RGF aims at re-
moving textures through scale-space filtering. This implicit
regularization is simple and easy to implement, but the fil-
tering formalization prevents its wide applicability. For ex-
ample, it is hard to handle input images where information
is sparse, e.g., in image colorization [18]. The local nature
of this approach might introduce artifacts, e.g., halos and
gradient reversal [10]. Accordingly, implicit regularization
has been applied in a highly controlled condition, and usu-
ally employed as a pre- and/or post-processing for further
applications [17, 20]. An alternative approach is to explic-
itly encode the regularization process into an objective func-
tional, while taking advantage of a guidance signal. The ob-
jective functional typically consists of two parts: A fidelity
term describes the consistency between input and output
images, and a regularization term encourages the output im-
age to have a similar structure to the guidance image. The
weighted least-squares (WLS) framework [7] is the most
popular explicit regularization method that has been used in
static guidance regularization [25]. The regularization term
is modeled as a weighted l2 norm. Anisotropic diffusion
(AD) [26] is an explicit regularization framework using dy-
namic guidance. In contrast to INM [2] and the RGF [35],
AD updates both input and guidance images at every step;
The regularization is performed iteratively with regularized
input and updated guidance images. This explicit regu-
larization enables formulating a task-specific model, with
more flexibility than using implicit regularization. Further-

more, this type of regularization overcomes several limita-
tions of implicit regularization, such as halos and gradient
reversal, at the cost of global intensity shifting [7, 10].

Existing regularization methods typically apply to a lim-
ited range of applications and suffer from various artifacts:
For example, the RGF is applicable to scale-space filtering
only, and suffers from poor edge localization [35]. In con-
trast, our approach provides a unified model for many ap-
plications, gracefully handles most of these artifacts, and
outperforms the state of the art in all the cases considered
in the paper. Although the proposed model may look sim-
ilar to WLS [7] and the RGF [35], our nonconvex objec-
tive function needs a different solver. Contrary to iteratively
reweighted least-squares (IRLS) [5], we do not split a non-
convex regularizer but approximate the objective function
by a surrogate (upper-bound) function.

3. Proposed Approach
3.1. Motivation and Problem Statement

There are pros and cons in regularizing images under
static or dynamic guidance. Let us suppose the example of
depth super-resolution, where a high-resolution (HR) color
image (the guidance image) of Fig. 1 (a) is used to upsam-
ple (⇥8) a low-resolution (LR) depth map (the input image)
of Fig. 1 (b). Regularization with static guidance recon-
structs the destroyed depth edges by using the color image
with high signal-to-noise ratio (SNR) [8, 15], as in the red
boxes of Fig. 1 (c). However, this method has difficulties
with handling differences in structure between depth and
color images, transferring all the structural information of
the color image to the depth map, as in the blue boxes of Fig.
1 (c). For regions of high contrast in the color image, e.g.,
textures, the depth is altered according to the texture pat-
tern [3]. Similarly, the gradient of the depth map becomes
similar to that of the color image for regions of low contrast
in the color image, e.g., weak edges. This smoothes depth



edges, and causes jagged artifacts [21]. Regularization with
dynamic guidance utilizes the contents of the depth maps2,
avoiding the problems of static guidance regularization, as
in the blue boxes of Fig. 1 (d). The depth edges are pre-
served, and unwanted structures are not transferred. A lim-
itation is that dynamic guidance only does not utilize the
abundant structural information that exists in the color im-
age. Thus, depth edges are smoothed, and even eliminated
for regions of low contrast in the depth map, as in the red
boxes of Fig. 1 (d). This example illustrates the fact that
static and dynamic guidance complement each other, and
exploiting only one of them is not sufficient to infer high
quality structural information from the input image. This
problem becomes even worse when input and guidance im-
ages come from various types of data and have different
statistical characteristics. Our model jointly leverages the
structures of static (color image) and dynamic (depth map)
guidance, taking advantage of both of them, as shown in
Fig. 1 (e).

3.2. Model
Given the input image f , static guidance g, and the out-

put image u itself (dynamic guidance), we denote by fi,
gi, and ui; the corresponding image values at pixel i, with
i ranging over the image domain I ⇢ N2. Our objective
is to infer the structure of the input image by jointly using
static and dynamic guidance. The influence of the guidance
images on the input image varies spatially, and is controlled
by affinity functions that measure similarities between adja-
cent vertices. Various features (e.g., spatial location, inten-
sity, and textures [13, 25]) and metrics (e.g., Euclidian and
geodesic distances [7, 19]) can be utilized to represent dis-
tinctive characteristics of vertices on images, and measure
their similarities.

We minimize an objective function of the form:

E(u) =
X

i

ci(ui � fi)
2
+ �⌦(u). (1)

It consists of fidelity and regularization terms, balanced by
the regularization parameter �. The fidelity term helps the
solution u to harmonize well with the input image f with
confidence ci � 0. The regularization term smoothes the
solution u, and makes it have structures similar to static
and/or dynamic guidance, g and u. In static guidance reg-
ularization, ⌦(u) =

P
i,j �µ(gi � gj)(ui � uj)

2 where
�µ(x) = exp(�µx

2
), and µ controls the smoothness band-

width. In a purely equivalent dynamic guidance setting, one
would take ⌦(u) =

P
i,j �⌫(ui � uj)(ui � uj)

2 for some
⌫, and in a mixed setting: ⌦(u) =

P
i,j �µ(gi�gj)�⌫(ui�

uj)(ui � uj)
2. These regularizers may be hard to optimize

2Dynamic guidance is initially set to the upsampled depth map obtained
from static guidance regularization as shown in Fig. 1 (c), not the LR depth
map itself.
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Figure 2. A nonconvex regularizer  ⌫(x), its surrogate functions
 y

⌫(x) [left], and a l1 regularizer ↵|x| (a tight upper bound func-
tion of  ⌫(x)) [right] when ⌫ = 1 and ↵ = 0.6382. (Best viewed
in color.)

and be unstable. Instead, we choose

⌦(u) =

X

i,j2N
�µ(gi � gj) ⌫(ui � uj), (2)

where  ⌫(x) = (1��⌫(x))/⌫, i.e., Welsch’s function [11],
and N is in our implementation, the set of image adjacen-
cies, defined in a local 8-neighborhood system.
Nonconvex Regularizer. As shown in Fig. 2,  ⌫(x) is
a nonconvex regularizer: Welsch’s function acts as a robust
regularizer [11], and thus our objective function makes joint
filtering robust to outliers. Inverse diffusion occurs when
 

0
⌫(x) decreases, which enhances features having high-

frequency structures (e.g., edges and corners) during reg-
ularization [6, 9, 26]. It may enhance noise as well, but the
static guidance image with high SNR in our model avoids
this problem. The combination of a fixed weight function
and a nonconvex regularizer is common in variational ap-
proaches [37], and they are typically referred to as image-
and flow-driven regularizers, respectively. Our model dif-
fers from image- and flow-driven regularization in its new
regularizer and solver. It is also more flexible (e.g., we can
handle sparse data of different resolutions). This leads to
new applications such as joint upsampling. Note that most
image- and flow-driven regularization techniques have been
applied to optical flow only. Finally, we are not aware of
existing joint image filters using a nonconvex regularizer.

3.3. Solver
Optimization. Let f = [fi]N⇥1, g = [gi]N⇥1, and
u = [ui]N⇥1 denote vectors representing the input image,
static guidance and the output image (or dynamic guidance),
respectively, where N = |I| is the size of images. Let
Wg = [�µ(gi � gj)]N⇥N , Wu = [�⌫(ui � uj)]N⇥N , and
C = diag ([c1, . . . , cN ]). We can rewrite our objective func-
tion in matrix/vector form as:

E(u) = (u� f)T C (u� f) +
�

⌫

1T
(Wg �W)1, (3)

where W = Wg �Wu, and � denotes the Hadamard prod-
uct of the matrices. 1 is a N ⇥ 1 vector, where all the



entries are 1. The diagonal entries ci of C are confidence
values for the pixels i of the input image. Minimizing E is
a nonconvex optimization problem, which can be solved by
the majorization-minimization algorithm (Fig. 3) as follows
[16, 22, 36]:
1. Majorization Step: Construct a surrogate function
Qk

(u) of E(u) such that
⇢ E(u)  Qk

(u), for all u,uk 2 ⇥
E(uk

) = Qk
(uk

), for all uk 2 ⇥ , (4)

where ⇥ ⇢ [0, 1]

N 3. The nonconvexity in our objective
function comes from the regularizer  ⌫(x) in (2), which
has a convex surrogate function  y

⌫(x) defined by (see the
supplementary material):

 

y
⌫(x) =  ⌫(y) + (x

2 � y

2
)(1� ⌫ ⌫(y)), (5)

that is, the curve x 7!  

y
⌫(x) lies above the curve  ⌫(x)

and is tangent to it at the point x = y [12], as shown in
Fig. 2. The surrogate objective function Qk

(u) can then be
found using (5) as follows:

Qk
(u) = uT

⇥C + �Lk
⇤
u� 2fT Cu+ fT Cf (6)

� �ukTLkuk
+

�

⌫

1T
�Wg �Wk

�
1.

Lk
= Dk � Wk is a dynamic Laplacian matrix at step k,

where Wk
= Wg � Wuk and Dk

= diag

�⇥
d

k
1 , . . . , d

k
N

⇤�

where d

k
i =

PN
j=1 �µ(gi � gj)�⌫(u

k
i � u

k
j ). Note that the

affinity matrix of static guidance is fixed regardless of steps,
and that of dynamic guidance is iteratively updated.
2. Minimization Step: Obtain the next estimate uk+1 by
minimizing the surrogate function Qk

(u) w.r.t. u as fol-
lows4:

uk+1
= argmin

u2⇥
Qk

(u) = (C + �Lk
)

�1Cf . (7)

The above iterative scheme decreases the value of E(u)
monotonically in each step, i.e.,

E(uk+1
)  Qk

(uk+1
)  Qk

(uk
) = E(uk

), (8)

where the first and the second inequalities follow from (4)
and (7), respectively, and it can be shown to converge to a
local minimum of E [31].
Initialization. Our solver finds a local minimum, and thus
different initializations for u0 (dynamic guidance at k = 0)
may give different solutions. In our work, two initializations
are used: The initial solution u0 can be set to a constant
vector, e.g., u0

= 1. Note that the constant initialization,
3A range of intensity values is normalized such that they exist between

0 and 1.
4In case of a color image, the linear system is solved in each channel.

E(u)Qk (u)

ukuk+1

Figure 3. Sketch of the majorization-minimization algorithm.
Given some estimate uk of the minimum of E , a surrogate function
Qk(u) is constructed. The next estimate uk+1 is then computed
by minimizing Qk

regardless of its value, makes W0
= Wg . This initializa-

tion is simple, but shows a slow convergence rate as shown
in Fig. 4 (a). A good initial solution accelerates the con-
vergence of our solver. We propose to use the following
regularizer to compute the initial solution u0:

⌦l1(u) =

X

i,j2N
�µ(gi � gj)↵|ui � uj |, (9)

where ↵ is set to a positive constant, chosen so ↵|x| is a
tight upper bound of  ⌫(x) (Fig. 2). This regularizer is
convex, and the global minimum of (9) is guaranteed.

3.4. Properties
Convergence. We show the convergence rate of (7) as k

increases, and observe its behavior with different initializa-
tions (u0

= 1 and u0
= ul1 , a global minimum of (1)

using ⌦ = ⌦l1 ). Figure 4 shows how (a) the energy and (b)
the intensity differences (i.e., kuk�uk+1k1) evolve at each
step given the input image in (c). Our solver converges in
fewer steps with the l1 initialization (u0

= ul1 ) than with
the constant one (u0

= 1), with faster overall speed, de-
spite the overhead of the l1 minimization. On this example,
our solver with the constant and l1 initializations converges
in 30 and 7 steps (Fig. 4 (d) and (e)), each of which takes
45 and 20 seconds, respectively. Although our solver with
u0

= 1 converges more slowly, the per-pixel intensity dif-
ference decreases monotonically, and 5 steps are typically
enough to get satisfactory results in both cases5. It should be
noted that most filtering methods, except the recently pro-
posed RGF [35], if they are applied repeatedly, eventually
converges to a trivial solution, i.e., a constant signal [35],
regardless of whether they have implicit or explicit forms
(e.g., BF [30] and AD [26]). In contrast, repeatedly solving
the linear system of (7) still gives a meaningful solution in
the steady-state.
Scale Adjustment. There are two approaches to incorpo-
rating scale information in image regularization [7, 26, 35].

5After 5 steps, an average (maximum) value of the per-pixel intensity
difference is 9.4⇥10�5 (1.7⇥10�3) with u0 = 1 and 4.3⇥10�5 (8.7⇥
10�4) with u0 = ul1 . Current un-optimized MATLAB implementation
on 2.5 GHz CPU takes about 9 seconds (u0 = 1) and 16 seconds (u0 =
ul1 ) to filter an image of size 500 ⇥ 400 with a 8-neighborhood system
and k = 5.
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Figure 4. An example of (a) energy evolution and (b) a sum of in-
tensity difference between successive steps, i.e., kuk � uk+1k1,
given (c) the input image. Our model monotonically converges,
and guarantees a meaningful solution in the steady-state: (d)
u0 = 1, k = 30, and (e) u0 = ul1 , k = 7. In this example, for
removing textures, g is set to the Gaussian filtered version (stan-
dard deviation, 1) of the input image [� = 50, µ = 5, ⌫ = 40].
See Sec. 4.2 for details.

In filtering methods, an intuitive way to adjust a degree of
smoothing is to explicitly use an isotropic Gaussian ker-
nel. Due to the space-invariant property of the kernel, it
regularizes both noise and features evenly regardless of the
local structure [26]. The RGF addresses this problem in
two phases: Small structures are removed by the Gaussian
kernel, and large structures are then recovered [35]. Since
RGF is based on the Gaussian kernel, it inherits its limita-
tions; This leads to poor localization at coarse scales, which
causes corners to be rounded and boundaries to be shifted.
The regularization parameter is empirically used to adjust
scales in explicit regularization methods [7]. It balances the
degree of influence of fidelity and regularization terms in
such a way that a large value leads to more regularized re-
sults than a small one. Now, we will show how the regu-
larization parameter controls scales in our case, and how it
relates to the standard deviation of the Gaussian kernel. Let
uk+1 ! u?, Dk ! D? and Wk ! W? as k ! 1. Then,
it follow from (7) that

(C + �D?
)u? � �W?u?

= Cf . (10)

Let us define diagonal matrices A and A0 as

A = �(C + �D?
)

�1D?
, (11)

and
A0

= (C + �D?
)

�1C, (12)

such that A + A0
= I. By multiplying the left- and right-

hand sides of (10) by (C + �D?
)

�1, we obtain

u?
= (I� �(C + �D?

)

�1D?

| {z }
A

P)

�1
(C + �D?

)

�1C| {z }
A0=I�A

f

(13)

= (I�A)(I�AP)

�1f = Sf ,
where P = D?�1W? and

S = (I�A)(I�AP)

�1
= (I�A)

X1

n=0
AnPn

. (14)

That is, S is defined as a weighted average of all matrices
Pn, n = 0, ...,1. Note that Pn is the n

th order transition
probability of the random walker, and its element pnij rep-
resents the probability that the random walker at the vertex
j arrives at the vertex i after n time transitions [24]. As n

increases, the random walker can travel far away, and we ex-
pect to see coarser structures. Thus,

P1
n=0 AnPn considers

all paths between two vertices at all scales (n = 0, ...,1),
and each Pn is modulated by the weight An that is con-
trolled by the regularization parameter � as in (11). By in-
creasing �, the random walker can travel to a distant vertex
more easily. This indicates that the regularization parameter
has a similar role to the standard deviation in the Gaussian
kernel.

4. Applications
Our model is applied to depth super-resolution, scale-

space filtering, texture removal, flash/non-flash denoising,
and RGB/NIR denoising. Additional results are available in
the supplementary material.

4.1. Depth Super-Resolution
Parameter Settings. In our model, input and guidance
images, f and g, are set to sparse depth and HR images,
respectively, where ci = 1 if the pixel i of the sparse depth
map f has valid data, and otherwise, 0. The constant ini-
tialization is used, and the bandwidths and the step index
are fixed to all experiments (u0

= 1, µ = 60, ⌫ = 30,
and k = 10). The regularization parameter � is set to 0.1
for synthetic examples, and set to 5 for real-world exam-
ples due to huge amounts of noise. Other results for the
comparison have been obtained from source codes provided
by the authors, and all the parameters have been carefully
set through intensive experiments for the best performance.
For the quantitative comparison, the bad matching errors
(BMEs) for all regions and regions near depth discontinu-
ities are measured as Oall =

P���
u

?
i � u

gt
i

��
> �

��
N and

Odisc =
P�

mi

��
u

?
i � u

gt
i

��
> �

��
M , respectively, where �

is a depth error tolerance [29]. u?
i 2 u? and u

gt
i 2 ugt rep-

resent estimated and ground truth depth maps, respectively.
m is a binary mask where mi = 1 if the pixel i belongs to
the regions near depth discontinuities, and otherwise, 0, and
M = kmk1.



(a) HR image (b) Ground truth (c) Bilinear Int. (d) GF [10] (e) WMF [20] (f) TGV [8] (g) Ours

Figure 5. Visual comparison of upsampled depth maps on a snippet of the books sequence in the Middlebury test bed [29]. In contrast to
static guidance regularization such as (d) GF [10] and (e) WMF [20], (g) joint static and dynamic guidance model interpolates LR depth
maps by considering structures of color and depth images both, preserving sharp depth transitions.
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Figure 6. Log 10 of the normalized histograms of relative depth
and intensity values (gradients along x- and y-axis) from the Mid-
dlebury test bed [29]. (Best viewed in color.)

Synthetic Examples. We have synthesized the LR depth
map by (⇥8) downsampling a ground truth image from
the Middlebury benchmark data set [29]: Tsukuba, Venus,
Teddy, Cones, Art, Books, Dolls, Laundry, Moebius, and
Reindeer, and used the corresponding color image as the
HR intensity image. Table 1 summarizes average BMEs
with the tolerance � = 1. Oall has been measured only,
except when the ground truth index map of discontinuous
regions m is available. Our model outperforms other regu-
larization methods, especially around depth discontinuities.
Figure 5 gives quantitative results, and clearly shows the
different behavior between static guidance and joint static
and dynamic guidance models. For example, the gradient
of the depth map becomes similar to that of the color im-
age in static guidance methods [8, 10, 20], which tends to
eliminate or smooth depth boundaries, and causes jagged
artifacts. This can be further verified by observing statisti-
cal distributions of upsampled depth maps as shown in Fig.
6. Table. 2 compares average BMEs and processing time
of the constant and l1 initializations6 by varying the num-
ber of steps. This table shows that 1) our solver with the
l1 initialization convergences faster than that with the con-
stant one. For example, the l1 and constant initializations
converge with 5 and 30 steps, respectively, 2) both initial-

6An average BME of ul1 itself is 12.43.

Table 1. Average BMEs of Upsampled Depth Maps on the Mid-
dlebury Test Bed [29]

u0 = 1 Oall ± std. Odisc ± std.

Bilinear Int. 15.98±8.29 38.63±5.17
GF [10] 19.85±11.2 35.40±6.96
Park et al. [25] 14.81±5.97 22.65±3.89
TGV [8] 12.34±6.40 22.73±6.08
WMF [20] 9.84±5.48 19.88±7.47
Ours 7.08±3.42 12.05±6.30

Table 2. Quantitative Comparison of Upsampled Depth Maps from
Constant and l1 Initializations on the Middlebury Test Bed [29]

u0 = 1 u0 = ul1

k Oall ± std. time (s) Oall ± std. time (s)

1 10.05±4.76 0.60 7.55±3.54 4.78
3 7.60±3.64 1.44 7.14±3.37 5.70
5 7.23±3.52 2.33 7.07±3.36 6.61
10 7.08±3.42 4.39 7.07±3.37 8.68
20 6.68±3.86 8.48 7.07±3.38 12.71
30 7.05±3.41 12.47 7.08±3.38 16.67
40 7.05±3.41 16.88 7.07±3.38 20.93
50 7.05±3.41 21.06 7.07±3.38 25.39

Table 3. BMEs of Upsampled Depth Maps on the Graz Data Set
[8]

u0 = 1 Books Devil Shark Oall ± std.

Bilinear Int. 16.21 13.68 17.60 15.83±1.99
GF [10] 19.65 13.12 20.68 17.82±4.10
TGV [8] 11.83 9.70 13.98 11.84±2.14
WMF [20] 13.33 9.81 15.77 12.97±3.00
Ours 9.91 8.09 12.71 10.24±2.33

izations give almost the same error at the convergence, and
3) the l1 initialization takes less time than the constant ini-
tialization for the convergence.
Real-World Examples. Recently, Ferstl et al. [8] have
introduced a benchmark data set where they provide both
LR depth maps captured by ToF sensor and highly accu-
rate ground truth depth maps acquired from using structured
light. We have performed a quantitative evaluation using
this data set [8] in Table 3. The BMEs are computed by set-
ting the error tolerance to 5 % of a pre-defined depth range
(0⇠255). This experiment demonstrates that the proposed
method outperforms the state of the art.

4.2. Scale-Space Filtering and Texture Removal
Parameter Settings. For scale-space filtering, the input
image f is guided by itself (g = f ). In texture removal, the



(a)

(b)

(c)

(d)

Figure 7. Examples of the scale-space representation obtained by
(a) WLS [7] [(from left to right) � = 5 ⇥ 103, 3 ⇥ 104, 2 ⇥ 105,
µ = 40], (b) WLS [7] [(from left to right) � = 50, 300, 2000,
µ = 5], (c) RGF [35] [(from left to right) �s = 4, 10, 50, �r =
0.05, k = 5], (d) our model [u0 = ul1 , (from left to right) � =
200, 1200, 3000].

static guidance image is set to a Gaussian-filtered version of
the input image, g = G�f where G� is the Gaussian kernel
with standard deviation �. The regularization parameter �
and � vary according to the scale. The bandwidths and the
step index are fixed to all experiments (µ = 5, ⌫ = 40, and
k = 5) in both applications.
Scale-Space Filtering. A scale-space representation can
be obtained by repeatedly applying the regularization
method while varying the regularization parameter �. Fig-
ure 7 shows examples of the scale-space constructed by (a)
and (b) WLS [7], (c) RGF [35], and (d) our model. The
WLS [7], a representative of static guidance regularization,
alters the scale of structures by varying the regularization
parameter. It suffers from global intensity shifting [10]
(Fig. 7(a)) or does not preserve structural information at
coarse scales (Fig. 7(b)). This could be alleviated by dy-
namic guidance regularization as in the RGF [35]. How-
ever, the RGF does not use the structure of the input image,
and the scale is controlled by isotropic Gaussian kernels,
which leads to poor boundary localization at coarse scales
(Fig. 7(c)). In contrast, our model uses the structures of in-
put and desired output images, and the scale depends on the
regularization parameter, providing well localized bound-
aries even at coarse scales. Moreover, it is robust to global
intensity shifting (Fig. 7(d)). The scale-space representa-
tion meets two criteria: causality and immediate localiza-
tion. Causality means that any feature at a coarse scale must
possess a cause at a finer scale [26]. Immediate localization
means that object boundaries should be sharp and coincide
well with the meaningful boundaries at each scale. We have
empirically found that our model meets the causality condi-

Table 1

ODS OIS ODS* OIS*

WLS 0.51 0.52 0.51 0.52

RGF 0.55 0.6 0.6 0.63

Ours 0.61 0.63 0.62 0.65
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Figure 8. Evaluation of edge localization on the BSDS300 [23]
(top), and examples of the gradient magnitude averaged over the
scale-space (bottom). Given (a) input image, the scale-space is
constructed by (b) WLS [7] [µ = 40], (c) RGF [35] [�r = 0.05,
k = 5], and (d) our model [u0 = 1], by varying scale parameters,
i.e., �  2 ⇥ 105 in WLS [7], �s  50 in RGF [35], and � 
2⇥ 103 in our model.

tion, min{u?
j,�}  u

?
i,�+⌧  max{u?

j,�} where ⌧ > 0, and
u

?
i,� 2 u?

� is the steady-state solution for �. The accuracy
of boundary localization is evaluated on the BSDS300 [23].
For all images in the data set, average ODS and OIS [1]
are measured by using gradient magnitudes of regularized
images, as shown in Fig. 8. These images are obtained by
varying scale parameters, i.e., � in WLS [7] and our model,
and �s in RGF [35]. ODS is the F-measure at a fixed con-
tour threshold across the entire data set, while OIS refers to
the per-image best F-measure. In the histograms of Fig. 8,
average ODS (OIS) is evaluated with gradient images, each
of which is averaged over the scale-space, e.g., Fig. 8 (d).
Average ODS⇤ (OIS⇤) is evaluated with gradient images at
the fixed scale that provides maximum ODS (OIS) for each
image. In both cases, our model outperforms other regu-
larization methods, showing sharper boundary transitions.
Texture Removal. For removing textures while maintain-
ing other high-frequency structures, we need a guidance im-
age that does not have textures, but contains large structures,
e.g., edges. Since it is hard to get such an image, we set the
static guidance image to a Gaussian-filtered version of the
original image f , g = G�f . This removes the textures of
scale �, but it also smoothes structural edges, e.g., bound-
aries. Our dynamic guidance and fidelity term reconstruct
smoothed boundaries, similar to [35]. Figure 9 shows reg-
ularization examples of (top) regular and (bottom) irregular
textures. Our model completely removes textures without
artifacts, and maintains small, high-frequency, but impor-



(a) Input (b) Cov. M1 [14] (c) RTV [32] (d) RGF [35] (e) Ours

Figure 9. Examples of the texture removal for (top) regular and (bottom) irregular textures. (a) Input image, (b) Cov. M1 [14] [� = 0.3,
r = 10], (c) RTV [32] [� = 0.01, � = 6], (d) RGF [35] [�s = 5, (from top to bottom) �r = 0.1, 0.05, k = 5], (e) ours [u0 = ul1 , (from
top to bottom) � = 1000, 100, � = 2].

tant structures to be preserved, e.g., corners.

4.3. Other Applications
Our model can be applied to joint image restoration

tasks. We have applied it to RGB/NIR and flash/non-flash
denoising problems as shown in Figs. 10 and 11. In
RGB/NIR denoising, color image f is regularized with the
flash NIR image g. Similarly, the non-flash image f is reg-
ularized with flash image g. Since there exist structural
dissimilarities between static guidance and input images (g
and f ), the results might have artifacts and unnatural ap-
pearance. For example, static guidance regularization such
as GF [10] cannot deal with a gradient reversal in flash NIR
images [33], resulting in smoothed edges. Our model han-
dles the structural differences between images, and shows
performance comparable to the state of the art [33].

5. Discussion
We have presented a joint filtering framework that is

widely applicable to computer vision and computational
photography. Contrary to static guidance methods, we
leverage dynamic guidance images as well, and they can
exploit the structural information of the input image. Al-
though our model does not have a closed-form solution, it
converges rapidly to a local minimum. The simple and flex-
ible formulation of our framework makes it applicable to a
great variety of applications.

(a) (b)

(c) (d)
Figure 10. RGB and flash NIR image restoration. (a) RGB images,
(b) NIR images, (c) GF [10] [r = 3, " = 4�4], (d) ours [u0 = 1,
� = 15, µ = 60, ⌫ = 30, k = 5].

(a) (b) (c) (d) (e) (f)

Figure 11. Flash and non-flash image restoration. (a) Flash image,
(b) non-flash image, (c) GF [10] [r = 3, " = 4�4], (d) result of
[27], (e) result of [33], (f) ours [u0 = 1, � = 15, µ = 60, ⌫ = 30,
k = 5]. The results of (d) and (e) are from their project webpages.
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