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Abstract

In this paper we present an approach for segmenting ob-
jects in videos taken in complex scenes with multiple and
different targets. The method does not make any specific
assumptions about the videos and relies on how objects
are perceived by humans according to Gestalt laws. Ini-
tially, we rapidly generate a coarse foreground segmenta-
tion, which provides predictions about motion regions by
analyzing how superpixel segmentation changes in consec-
utive frames. We then exploit these location priors to refine
the initial segmentation by optimizing an energy function
based on appearance and perceptual organization, only on
regions where motion is observed. We evaluated our method
on complex and challenging video sequences and it showed
significant performance improvements over recent state-of-
the-art methods, being also fast enough to be used for “on-
the-fly” processing.

1. Introduction

Object segmentation in videos is a fundamental task for
many computer vision applications, ranging from object
tracking to behaviour understanding to event detection. One
of the most common approaches for object segmentation
is through background modeling/subtraction techniques[5],
which aims at estimating a model of the scene without ob-
jects of interest; this model is then compared to each video
frame in order to extract foreground objects. Motion analy-
sis [15, 2], object ranking [24, 9] and clustering point tracks
[17, 4] methods have also been proposed, but they impose
strict assumptions on objects’ appearance and motion pat-
terns and on the target videos. Traditionally, background
modeling has been addressed by density-based methods,
where the distribution of each background pixel in time
is modeled by a probability density function (e.g. Gaus-
sian) [20, 18]. A recent trend in background modeling is
not to provide a pixelwise model but to exploit superpixels

[16, 12], thus increasing the spatial coherency and the over-
all quality of segmented objects. Superpixel-based model-
ing not only improves segmentation performance but also
boosts efficiency, in terms of both required memory and
computation time, since fewer models have to be kept in
memory and updated at every frame.
In this paper we describe an approach for object segmenta-
tion in videos which is able to work with fast moving and
multimodal backgrounds, highly deformable and/or articu-
lated objects and with different video qualities. At the same
time, it does not make any assumptions on how objects look
like or move but, instead, it adopts general properties of
real-world objects.
A key distinctive element of our method is the capabil-
ity to quickly identify candidate motion regions, as those
where significant variations on superpixel segmentation in
consecutive frames have been observed. This initial back-
ground/foreground segmentation does not rely on optical
flow as in [16], which is known to be computationally
expensive, but is based on assessing similarity between
spatio-temporal neighbor superpixels. The initial coarse
foreground segmentation proposes a set of location priors,
which are used as a basis for small segmentation problems
(one for each motion region) solved by minimizing an en-
ergy function designed to take into account how combina-
tions of superpixels resemble both foreground/background
models and “real-world” objects, according to perceptual
organization principles.
The performance evaluation carried out on three standard
datasets shows that our approach 1) is able to deal with
complex scenes, with several non-rigid objects undergoing
sudden appearance changes, and with fast varying and mul-
timodal backgrounds; 2) is able to generalize over different
object classes since no offline training or a-priori knowledge
is required; 3) outperforms existing and powerful video ob-
ject segmentation approaches, e.g., [3, 16]; 4) achieves en-
couraging results on challenging datasets such as SegTrack
[21], Underwater Dataset [19], I2R [10]; and 5) is able to
work “on-the-fly”.



2. Related Work

The goal of background modeling and subtraction al-
gorithms is to build a model of the background in an off-
line phase and then extract objects of interest by compar-
ing frames with the estimated model, which must be ro-
bust enough to cope with background changes, both fast
and slow. The most popular background modeling meth-
ods are the density-based ones, where background pixel ap-
pearance is modeled by a probability density function (pdf ;
e.g. Gaussian [25]). The main shortcoming of these meth-
ods is the extremely low performance in dynamic natural
scenes which, instead, involve the use of multimodal den-
sity functions as Gaussian mixture models [20]. However,
methods based on mixtures of pdf s require effective strate-
gies to update adaptively the components of the mixtures.
Methods based on kernel density estimation [18] or not us-
ing a pdf such as [3], which classify background and fore-
ground pixels according to their historical color values, have
demonstrated superior performance also in complex scenes
[19]. Nevertheless, exploiting only pixel colors imposes
several limitations to the video object segmentation task:
from the erroneous identification of luminosity changes and
shadows to missing objects with colors similar to the back-
ground. Indeed, recent research [7, 11, 23] has proved that a
proper combination of visual features (color, texture and/or
motion) modeling temporal and spatial pixel variations im-
proves performance sensibly. Explicitly modeling the fore-
ground, instead of only the background, seems to enhance
performance as well [18].
In the last years, a trend towards modeling spatio-temporal
uniform (in terms of either appearance or motion) regions
instead of single pixels has been observed [16, 12]. These
works are closely related to ours, as they rely on superpix-
els for object segmentation in videos. The core idea is that
in superpixels appearance and motion are more or less uni-
form, thus estimated density functions are likely to be quite
accurate. However, these methods 1) need to compute the
motion field through optical flow, which is computationally
expensive; 2) group superpixels together according to pure
spatio-temporal similarity (in terms of appearance) without
exploiting real-world object features; and 3) produce seg-
mentation through global minimization of an energy func-
tion, thus considering video object segmentation as a single-
objective optimization problem, while, in fact, it is intrinsi-
cally multi-objective.

3. Our approach

The proposed method takes inspiration from [16] but ex-
tends it and outperforms it sensibly since 1) it is able to seg-
ment objects also in crowded scenes; 2) it accurately seg-
ments complex articulated objects (e.g., “girl” in the Seg-
Track dataset); and 3) it is fast enough to be used for on-

the-fly video processing.
The basic principles which led the design of the algo-

rithm are the following:

• Superpixels as segmentation units: Working with pix-
els is very susceptible to noise and fuzzy region bound-
aries, besides being in general more computationally
expensive as the number of elements to analyze be-
comes very large.

• Objects as superpixel aggregations: Since superpix-
els typically tend to largely oversegment an image, we
can assume that object boundaries always correspond
to superpixel boundaries (i.e., no superpixels span over
two objects). Therefore, as superpixel segmentation
already guarantees a fairly robust boundary detection,
we can formulate the segmentation task as the identifi-
cation of connected foreground and background super-
pixels.

• Motion superpixels as location priors: Assuming that
static video regions produce no motion superpixels, de-
fined as superpixels on which we detect motion activity
in two consecutive frames (see Sect. 3.1), we can limit
our analysis to areas where motion superpixels aggre-
gate, and process them independently as several sub-
tasks, which is more efficient than performing a global
segmentation on all superpixels and yields better re-
sults.

• Appearance similarity: By managing foreground and
background models, we are able to know what objects
look like in terms of color. Therefore, the segmenta-
tion algorithm should try and keep similar superpixels
together.

• Perceptual organization: Objects in the real world
have a generally regular and compact geometrical
structure, according to the Gestalt principles of attach-
ment, similarity, continuity and symmetry, which are
believed to encode the capability of humans to capture
the whole from the parts [6] without a-priori knowl-
edge. Enforcing such principles in the way superpixels
are combined together can help obtain segments which
are more likely to match the actual objects in the scene.

Based on these criteria, our algorithm consists of the
following steps:

Initial foreground estimation. In this phase, motion
regions, defined as the bounding boxes (suitably expanded
by Dpad = 3 pixels) around connected groups of motion
superpixels, are identified. Unlike previous methods
[16], this preliminary segmentation is carried out without
computing optical flow, but, instead, analyzing superpixel
segmentation changes in consecutive frames (see Fig. 1).
Ideally, in two consecutive frames, superpixel segmentation



changes only in areas with moving objects. This gives a
straightforward condition to rapidly identify foreground
but, practically, background object movements and light
changes may generate false positives that need to be
removed. Each motion region is then treated as a single
optimization problem for the subsequent accurate object
segmentation step.

Background/foreground models estimation. Usu-
ally background subtraction approaches maintain a model
for each background pixel, which is initialized in an
off-line phase where only background frames are taken
into account and then updated using the classification map.
In our approach, we do not build a background model for
each pixel; instead, we have an on-line model for each
background region and each foreground object.

Accurate object segmentation. The goal of this step
is to accurately identify object boundaries by group-
ing/removing superpixels starting from motion regions
identified previously (see Fig. 1) in order to encour-
age spatial smoothness. To obtain an accurate object
segmentation, we group superpixels by optimizing an
energy function, which includes appearance similarity
to the background/foreground models and perceptual
organization principles. This energy minimization process
is done for each detected motion region, as opposed to
global minimization approaches [16] (see Fig. 3). We do
not impose any constraints on motion smoothness (unlike
[16, 12]) since it makes the entire process too dependent on
the frame rate of the analyzed videos.

3.1. Initial Foreground Segmentation

Our approach starts with superpixel segmentation carried
out by means of SLIC [1], which is an efficient adaptation of
k-means in the labxy image space for robust superpixel gen-
eration. This step operates on pairs of consecutive frames
(t, t + 1) and identifies motion regions based on the con-
sideration that superpixel segmentation, in two subsequent
frames, remains more or less stable in background regions,
while it changes substantially in the case of moving objects.

Let St and St+1 be the sets of the superpixels computed,
respectively, at frame t and t + 1. For each superpixel
sit+1 ∈ St+1 we compute the Jaccard distances (dJ ) be-
tween its backprojection at time t (sit+1→t) and all the su-
perpixels in St. If the minimum of such distances is above
a threshold, we mark the superpixel as “motion superpixel”
(see Fig. 2). Therefore, the initial foreground mask M t+1

at time t+ 1 is given by:

M t+1
sit+1

=

{
1 if mins∈St

dJ(sit+1→t, s) > T

0 otherwise
(1)

The threshold T is adaptively computed as the average of

Figure 1. (a) and (b) two input frames. (c) Set of motion superpix-
els: false positives — filtered out at this stage — are shown in red,
while correct ones are shown in green. (d) Motion regions built ac-
cording to the filtered motion superpixels. In each motion region,
we then perform accurate segmentation by energy minimization.

Figure 2. Example of motion superpixel identification. Super-
pixel sit+1 at frame t+1 is backprojected on frame t, overlapping
four superpixels. sit+1 is marked as “motion superpixel” if the
Jaccard distance between it and the superpixel with the highest
overlap (i.e. minimum Jaccard distance) is above threshold T .

the minimum Jaccard distance between all superpixels in
frame t+1, which allows to handle, even in this early stage,
slow object motion (T will be low, enabling the detection
of fine superpixel variations) and camera motion (T will be
high, and many superpixels with apparent motion will be
filtered). To further remove false positives (red-colored su-
perpixels in Fig. 1), isolated motion superpixels or small
groups of connected superpixels are discarded. Moreover,
as soon as the background/foreground models become reli-
able (after three frames; see Sect. 3.2) they are used to re-
move background superpixels misclassified as motion ones,
by fitting a Mixture of Gaussians (MoG) for each super-
pixel and computing the Kullback-Leibler divergence from
the background/foreground models.



Figure 3. (a) Output mask obtained by [16] performing energy minimization of the whole image, (b) Output mask of our method when
excluding location priors, thus performing energy minimization taking into account all image superpixels and (c) Output mask of our
approach with location priors.

3.2. Background/foreground model estimation

In order to include constraints on the visual appearance
of the objects in the scene, we maintain a set of background
and foreground color models. Using several models for
background and foreground, instead of only one each (as in
[16]), allows to handle appearance multimodality: this is es-
pecially important when several moving objects are present
in the scene, so that each can be modeled and matched in-
dependently. It is important to understand that, although in
this section we will describe the construction of the mod-
els from a pixel-based point of view (and necessarily so due
to the nature of color features), all other parts of the pro-
posed method (from the identification of motion superpix-
els to segmentation as a minimization problem, in the next
section) deal with superpixels as a basic and atomic unit.

Model initialization is performed at the first processable
frame (i.e., the second video frame, when the first motion
superpixel segmentation is available) by fitting a set of mix-
tures of Gaussians (MoGs)1 to each background region and
foreground region: background regions are obtained using
adaptive k-means clustering on the whole image excluding
motion superpixels and very small clusters, whereas fore-
ground regions simply consist in connected sets of motion
superpixels, ideally associated to each moving object in the
scene. After model initialization is performed, we have a
set of background models {ψb,1, ψb,2, . . . , ψb,Nb

} and one
of foreground models

{
ψf,1, ψf,2, . . . , ψf,Nf

}
, whereNb is

the number of clusters obtained from the adaptive k-means
on the background pixels and Nf is the number of fore-
ground regions from the initial motion superpixel segmen-
tation.

Background model re-initialization is performed at the
second processable frame (i.e., the third video frame, when
the first object segmentation is available) and after every
Tinit frames, since as time passes scene conditions may

1The number of components is adaptively set by minimizing the Akaike
information criterion.

change and the models may become outdated: this hap-
pens, for example, if foreground regions become stable and
are absorbed into the background, or if new moving ob-
jects appear. Moreover, the need for re-initializing the back-
ground model at the second processable frame comes from
the fact that the initial models are based on the inaccurate
segmentation provided when using motion superpixels only,
whereas at this point we can use the accurate object segmen-
tation map for the previous frame to separate background
and foreground regions.
Model update is performed at every frame (except when
the model is re-initialized) after segmentation is completed.
The update process for the background models at frame t
consists of the following steps:

1. Initialize sets Pb,1 = ∅, . . . , Pb,Nb
= ∅, representing

the sets of pixel values (as RGB triplets) which will be
used to update the corresponding background model.

2. Put into each Pb,i all pixel values from frame t − 1
which had been associated to background model ψb,i.

3. Compute background model priors π1, . . . , πNb
based

on cluster sizes up to the previous frame.
4. For each pixel p belonging to superpixels labeled

as background, add it to set Pb,i according to
a maximum-a-posteriori criterion, i.e. such that:
i = arg maxj P (ψb,j |p).

5. Fit a MoG ψbi from each set Pb,i, using the cur-
rent models as initial conditions for the expectation-
maximization algorithm.

6. Remove models ψb,i from the model set if Pb,i = ∅.

Using also pixels from the previous frame to fit the models
(item 2) helps to prevent problems with the fitting algorithm
when the initial conditions are too different from the target
data set.
Foreground models are updated on a per-object basis, as
follows:

1. Initialize sets Pf,1, . . . , Pf,Nf
, similarly as above.



2. For each foreground object Oi segmented at frame t
which contains at least one motion superpixel (see sec-
tion 3.3), fit a MoG Γi on the object’s pixels.

3. Identify the foreground modelψf,j which best matches
Oi using the Kullback-Leibler (KL) divergence:
j = arg mink dKL(ψf,k,Γi)

4. If the KL divergence between ψf,j and Γi is smaller
than a threshold Tfg, add Oi’s pixels to Pf,j . Other-
wise, create a new set Pf,Nf+1 containing Oi’s pixels,
and increase Nf by 1.

5. Fit a MoG ψfi from each set Pf,i, similarly as above.
6. Remove models ψf,i from the model set if it has

matched no objects for the past Tf frames.

3.3. Accurate object segmentation

The initial segmentation based on motion superpixels is
not accurate enough, as it does not take into account any
information on visual appearance or on how well a set of
superpixels geometrically fit together, as shown in Fig. 1.
Nevertheless, motion regions provide initial location priors
for accurate segmentation based on appearance similarity
and perceptual organization. These location priors are com-
bined with the previous foreground map to allow segment-
ing objects which become temporarily stationary. However,
in order to avoid a self-feeding effect on background re-
gions incorrectly identified as foreground, and to let the
algorithm “forget” foreground regions which are absorbed
into the background, foreground models for appearance (see
section 3.2) are updated only from superpixels belonging to
regions which originally contained motion superpixels.
Then, for each motion region, a local segmentation sub-
task is defined by taking into account also non-motion su-
perpixels intersecting the region’s bounding box. Depend-
ing on the size of the object, the number of superpix-
els involved in each subtask is relatively small (in the or-
der of the tens), which allows to solve the problem effi-
ciently. If several motion regions intersect, we join them
into a unique region. After that, considering each sub-
task independently, we pose the segmentation task as an
energy minimization problem, where higher segmentation
costs are due when the algorithm assigns different labels to
similar contiguous superpixels or to contiguous superpix-
els which perceptually fit to each other. Formally, given
the set of superpixels S = {s1, . . . , sN} and a set of cor-
responding labels L = {l1, . . . , lN}, where each li ∈
{0 : background, 1 : foreground}, the overall energy func-
tion is as follows:

E(L) = A(L) + P (L) (2)

A(L) =
∑
li∈L

a1(li) +
∑

(li,lj)∈N (L,S)

a2(li, lj) (3)

P (L) =
∑

(li,lj)∈N (L,S)

p(li, lj) (4)

whereA(L) and P (L) respectively represent the overall ap-
pearance and perceptual organization energies, N (L, S) is
the set of all pairs of neighbor superpixels (i.e., with part of
boundary in common), and the potentials a1(·), a2(·, ·) and
p(·, ·) enforce our design principles on visual similarity and
perceptual organization. As shown below, these potentials
are defined so that E(L) is a binary pairwise function with
sub-modular pairwise potentials, thus efficiently minimiz-
able using graph cuts in order to obtain the final segmenta-
tion:

L = arg min
L

E(L) (5)

In the following, each potential function is described in de-
tail.

Background/foreground similarity. The unary poten-
tial a1(·) indicates whether a superpixel is best associated
to the foreground or the background. Given superpixel
si = {p1, . . . , pn}, let us assume we want to compute
the cost of assigning label 0 (i.e., background) to si. For
each pixel pj ∈ si and for each background model ψb,k,
we compute the posterior probability P (ψb,k|pj). We then
average these probabilities for each background model and
choose the maximum among the averages as the overall
background probability Pb for si; the negative log-posterior
is then used as value for a1(0) (since we are considering the
background case).

If li is 1 (foreground), the prior for model ψf,k is
c · 1

tk+Nf
, where tk denotes how many frames ago the

model was last updated and c is a normalization factor.
Mathematically, the overall formula can be written as:

a1(li) = − log max

 1

|si|
∑
pj∈si

P (ψx,k|pj)


k=1...Nx

(6)
where |si| is the number of pixels in si and the pair
(ψx,k, Nx) depends on li:

(ψx,k, Nx) =

{
(ψb,k, Nb) if li = 0

(ψf,k, Nf ) if li = 1
(7)

Local similarity. The binary potential a2(·, ·) defines
the cost of assigning different labels to two neighbor su-
perpixels, based on their color similarity. Our approach on
estimating this quantity is based on the following consider-
ation: the similarity of two superpixels can be seen as the
probability that their union is generated by the same color
distribution, be it a background or a foreground one; if they
are not similar, their union will be unlikely to be generated
by any background/foreground model. Thus, given super-
pixels si and sj , we fit a MoG Γij from the pixels belonging
to si ∪ sj , then compute the minimum KL divergence be-
tween Γij and all background and foreground models, and
use it as a dissimilarity measure between si and sj ; in order



to guarantee submodularity [8], the final value of potential
a2(li, lj) is non-zero only if li 6= lj .

Formally, the potential function is:

a2(li, lj) = [li 6= lj ]
[
1−min {dKL(Γij , ψ)}ψ∈Ψ

]
(8)

where [li 6= lj ] is 1 if the labels are different and 0 oth-
erwise, dKL(·) is the KL divergence function, and Ψ ={
ψb,1, . . . , ψb,Nb

, ψf,1, . . . , ψf,Nf

}
is the set of all back-

ground and foreground models. Comparing the superpixels’
union to the background/foreground models helps to pre-
vent problems when fitting the pixel distribution to a MoG,
since superpixels, by construction, are small and internally
homogenous. Sometimes, when pixels from both superpix-
els are almost identical and some color channels are prac-
tically constant, it is impossible to compute Γij : in such
cases, we set a2(li, lj) = [li 6= lj ], which reflects the high
similarity between the two superpixels. The reduced num-
ber of neighbor pairs (due to the small number of super-
pixels in each segmentation subtask) and the small number
of pixels in each superpixel makes the evaluation of a2(·, ·)
very fast, in spite of the number of models to build.

Perceptual organization. The binary potential p(·, ·)
defines the cost of assigning different labels to two neigh-
bor superpixels, based on how well they fit together from a
perceptual and geometrical point of view. To estimate this
quantity, we employ a variant of the approach proposed by
[6]. The potential function is computed as:

p(li, lj) = [li 6= lj ]e
−θ·[B(si,sj),C(si,sj)] (9)

where θ = [18, 3.5] is a weighing vector (suggested in [6]),
B(si, sj) is the boundary complexity of region si ∪ sj , and
C(si, sj) is the cohesiveness between superpixels si and sj .

Boundary complexity measures the regularity of the con-
tour obtained by joining two superpixels: intuitively, if they
belong to the same object, the contour of their union should
be ideally as smooth as if it were a single object in the first
place; similarly, if the contour of the union is not regular, it
is less likely that they belong to the same image segment.
In order to numerically encode this principle, an analysis
of convexity and of the number of notches (non-convex an-
gles) on the contour is performed: as we compute boundary
complexity the same way as in [6], we refer the reader to
that paper for details.

Cohesiveness also measures how well two superpixels
fit to each other, but is defined according to principles of
symmetry, continuity, and attachment strength. If the su-
perpixels’ sizes are similar (i.e., their sizes’ ratio is smaller
than 3), it is computed as:

C(si, sj) = λij(φij + ϕij) (10)

The symmetry score, φij , evaluates whether the centers
of mass of si and sj are aligned vertically (same x coor-
dinates) or horizontally (same y coordinates). If we define

(xi, yi) and (xj , yj) to be the centers of mass of superpixels
si and sj respectively, the symmetry score is computed as:

φij = min {|xi − xj |, 1} ·min {|yi − yj |, 1} (11)

which will return a small value if the differences between
either pair of corresponding coordinates is close to zero.

The continuity property indicates whether the line along
which si and sj’s common boundary is oriented does not
intersect either object at any other points. When this con-
dition is verified, the union of the two superpixels yields an
object with a perceptual impression of “continuity”, in the
sense that it is not evident that it is made up of two distinct
regions. The corresponding score, ϕij , is defined as:

ϕij =

{
0 if e(∂ij) ∩ ∂i = ∅ ∧ e(∂ij) ∩ ∂j = ∅
1 otherwise

(12)

where ∂i is si’s contour, ∂j is sj’s contour, ∂ij is the com-
mon boundary, and e(∂ij) is the portion of the line passing
by the extrema of the common boundary, excluding the seg-
ment between the extrema.

Attachment strength depends on how large the common
boundary is with respect to the superpixels’ whole bound-
aries:

λij = βe−α
L(∂ij)

L(∂i)+L(∂j) (13)

where β = 3 and α = 20 are two parameters (again, sug-
gested in [6]), and L(·) returns the length in pixels of a
boundary. In other words, if two objects are “well-attached”
(imagine two halves of a disk), the length of the common
boundary should be large; similarly, if the attachment is
weak (imagine two tangent circles), the length of common
boundary will be very small in comparison to the superpix-
els’ contour lengths.

In the particular case when one superpixel (say, si) is
markedly larger than the other (sj), symmetry and conti-
nuity may not be meaningful. Therefore, our cohesiveness
score for these situations becomes:

C ′(si, sj) = λ′ij = βe−α
L(∂ij)
L(∂j) (14)

that is, we only evaluate attachment strength on the smallest
superpixel only.

Once all potentials in the energy function are defined,
we can perform graph cut-based minimization to find the
optimal segmentation. However, since each segmentation
subtask is performed locally on a small set of superpixels,
it may happen that the region we are analyzing is included
into a large object, only a part of which was initially de-
tected by the motion superpixels2. Therefore, the above ap-
proach is iteratively applied (until no changes are detected

2Of course, the opposite case is not a problem: if a set of connected mo-
tion superpixels span a much larger area than the actual object, the excess
part will be segmented out by the energy minimization phase.



in consecutive iterations) both to capture large objects and
to refine the obtained masks. At each iteration, we per-
form motion region–based segmentation (as above) with the
difference that the object blobs detected at previous itera-
tions are now considered as single large superpixels (hard-
constrained to be labeled as foreground), thus allowing to
iteratively refine object segmentation at a low processing
cost, since all superpixels merged into blobs in previous it-
erations do not need to be processed again.

4. Experimental Results
In this section we present qualitative and quantitative re-

sults of our approach on three datasets — the Underwater
dataset [19], SegTrack [21], and I2R [10] — to show how
our method performs in cases of slow motion, camera mo-
tion, small objects and cluttered scenes. The parameters
Tinit, Tfg and Tf are set, respectively, to 15, 0.8 and 10 for all
the employed datasets. Superpixel size was set to 7×7, as a
compromise between the risk of segmentation errors, sensi-
tivity of threshold T to noise, and processing speed. As [16]
is also based on superpixel segmentation, but employs opti-
cal flow, it was used as the main baseline in all evaluations,
using the public source code with default parameters.

4.1. Underwater Dataset

The underwater dataset is a collection of 14 “real-life”
underwater videos (10-minute videos with spatial resolu-
tion from 320×240 to 640×480, at 5 fps) taken with static
cameras to monitor Taiwan coral reef, and is featured by
small objects and cluttered scenes. The videos are classified
into seven different classes: Blurred (low-contrast scenes
with well-separated background and foreground), Com-
plex Background (background featuring complex textures,
thus suitable to test superpixel-based methods), Crowded
(highly cluttered scenes with several occlusions), Dynamic
Background (background movements, e.g., due to plants),
Luminosity Change (abrupt light changes), Hybrid (plant
movements together with luminosity changes), Camouflage
Foreground Object (e.g., objects very similar to the back-
ground). The dataset provides also ground-truth, consisting
of about 20 frames per video segmented at pixel level. We
compared our method to some background modeling state-
of-the-art approaches [18, 22, 3, 19] and also included the
well-known Gaussian Mixture Model [20] as baseline. For
these methods we report their performance as stated in [19]
where the original implementations (provided by the re-
spective authors) were used, thus avoiding implementation
bias in the performance analysis. The evaluations in terms
of F-measure scores (computed at pixel-level) are shown in
Table 1: on average, our method outperformed the other ap-
proaches in all videos, achieving good results in handling
light changes, deformable objects and cluttered scenes. Fig.
3 shows a qualitative comparison between our method and

Class [16] [20] [22] [3] [19] Our method

Blurred 35.1 83.3 70.3 85.1 93.3 89.8
Complex 36.1 67.0 83.7 74.2 81.8 86.3
Crowded 73.7 85.2 79.8 84.6 84.2 84.2
Dynamic 18.6 62.0 77.5 67.0 75.6 83.7
Hybrid 5.5 62.7 72.2 79.8 82.6 88.9
Luminosity 53.1 63.1 82.7 70.4 73.0 89.6
Camouflage 18.4 66.3 73.5 76.3 82.2 85.7
Avg 34.3 69.9 77.1 76.7 81.8 86.9
Std 23.2 9.2 4.9 6.4 6.0 2.4

Table 1. Results on the Underwater dataset. F-measure scores
(in percentage) for different methods on the Underwater dataset.
Our method is very robust to light changes and background move-
ments (see rows 4 and 6).

[16] [9] [24] [17] [3] Our method

Birdfall 217 288 155 468 606 278
Cheetah 890 905 633 1968 11210 824
Girl 3859 1785 1488 7595 26409 1029
Monkey 284 521 365 1434 12662 192
Parachute 855 201 220 1113 40251 251

Table 2. Results on SegTrack. The penguin video was discarded
since the annotations provided in the ground truth were not reliable
as only one penguin in a group of penguins was segmented.

[16]; it is possible to notice how our method was able to
identify objects hidden in background areas (see the fish on
the right side in Fig. 3) while [16] missed them.

4.2. SegTrack Dataset

SegTrack [21], originally built for testing tracking algo-
rithms, has been widely employed as a video object seg-
mentation benchmark [9]. It contains six videos (monkey-
dog, girl, birdfall, parachute, cheetah, penguin) and the
ground truth provides pixel-level foreground object annota-
tions for each video frame. The dataset is known for be-
ing very challenging due to camera motion, slow object
motion, object-background similarity, non-rigid deforma-
tions and articulated objects. We compared our method
to [9, 13, 24, 4, 17, 3] and reported their performance as
stated in [16]. Table 2 shows the achieved performance
as the average number of misclassified pixels per frame.
Our method performed remarkably well when compared to
the other methods, especially on the girl video where our
method shows its ability to segment articulated objects. In
fact, we were able to segment very well also legs and arms,
which were missed by [16].

4.3. I2R Dataset

The last evaluation was carried out on the I2R Dataset
[10], which contains nine videos (at 120×160 resolution)
taken with static cameras showing people in different in-
door and outdoor scenes. This dataset is commonly em-



Figure 4. Example results. We show two images for each video with our final mask superimposed in green. (First row) Underwater
Dataset. From left to right: Crowded, Dynamic, Luminosity. (Second row) SegTrack. Left to right: cheetah, girl, monkeydog. (Last row)
I2R. Left to right: AirportHall, Lobby, Fountain. The irregularities in object boundaries are due to the superpixel-based classification and
depends much on the employed superpixel segmentation approach. The effect seems to be more evident in some images because of the
boundary thickness.

ployed for testing video object segmentation approaches
and presents several challenges including slow motion, clut-
tered scenes, non-rigid deformations, articulated objects,
camouflage. The ground truth consists of 20 labeled frames
(at pixel-level) per video. Table 3 compares the F-measure
scores of our method to the ones achieved by the recent
background modeling approaches [11], [14], [19] that, sim-
ilarly to our approach, model (at pixel-level) background
and foreground and use combination of visual cues includ-
ing texture. Our method outperformed all the other methods
on the I2R dataset, especially on crowded scenes (e.g. Air-
portHall) and with articulated objects (e.g. Escalator). The
high performance obtained on the Escalator class is remark-
able given the presence of many occlusions.

Fig. 4 shows some example results where it is possible
to appreciate the capability of our approach to adapt to dif-
ferent complex scenes (e.g., with very sudden light changes,
see first row in Fig. 4) and targets (from highly deformable
ones, e.g., fish, to articulated ones, e.g., girl) without per-
formance loss.

We believe that including perceptual organization con-
straints into the method has effectively boosted its perfor-
mance: as further confirmation, the overall segmentation
accuracy decreased by more than 30% when excluding the
P (L) term in Eq. 2.

4.4. Processing Times

Our method takes on average 0.2 sec/frame on the Un-
derwater and SegTrack datasets (image resolution about
320×240) and 0.05 sec/frame on the I2R dataset (image

resolution of 160×120), which is fast enough to be used for
“on-the-fly” video processing. This is remarkable given that
[16] takes 0.5 sec/frame on the SegTrack dataset without
considering optical flow and superpixel processing times,
that increase [16]’s processing time to about 3 sec/frame.
All processing times of our method were measured on the
same machine as [16] (Intel Core i7 2.0 Ghz, 8 GB RAM)
to avoid bias in the comparison. The reason of the increased
speed of our approach is mainly due to modeling/classifying
superpixels instead on single pixels and to local energy min-
imization. Of course, faster methods exist, e.g. [19] achiev-
ing 0.05 sec/frame on the Underwater dataset (although it
relied on a C++ implementation, while our method is cur-
rently written in Matlab 2013a), but we believe that our
method shows a good speed/accuracy trade-off.

Class [16] [11] [14] [19] Our Method

AirportHall 29.6 68.0 71.3 69.2 77.4
Bootstrap 17.9 72.9 76.9 76.5 81.0
Curtain 23.2 92.4 94.1 94.9 96.3
Escalator 26.1 68.7 49.4 72.0 84.8
Fountain 15.1 85.0 86.0 83.2 84.1
ShoppingMall 13.1 79.7 83.0 78.5 86.7
Lobby 5.0 79.2 60.8 66.3 82.5
Trees 21.6 67.8 87.9 81.9 89.0
WaterSurface 83.7 83.2 92.6 92.5 93.9
Avg 26.1 77.4 78.0 79.5 86.2
Std 24.3 8.2 14.2 9.3 5.7

Table 3. Results on I2R. F-measure scores (in percentage) for dif-
ferent methods on the I2R dataset. Our method outperforms all the
reported methods, especially on the Escalator class.
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