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Abstract

This paper presents a method to predict social saliency,
the likelihood of joint attention, given an input image or
video by leveraging the social interaction data captured by
first person cameras. Inspired by electric dipole moments,
we introduce a social formation feature that encodes the
geometric relationship between joint attention and its so-
cial formation. We learn this feature from the first person
social interaction data where we can precisely measure the
locations of joint attention and its associated members in
3D. An ensemble classifier is trained to learn the geometric
relationship. Using the trained classifier, we predict social
saliency in real-world scenes with multiple social groups
including scenes from team sports captured in a third per-
son view. Our representation does not require directional
measurements such as gaze directions. A geometric analy-
sis of social interactions in terms of the F-formation theory
is also presented.

1. Introduction
Imagine an artificial agent such as a service robot oper-

ating in a social scene as shown in Figure 1. It would detect
obstacles such as humans in the scene and plan its trajec-
tory to avoid collisions with the obstacles. It may plan a
trajectory that passes through the empty space between the
audiences and performer. This trajectory intrudes on the so-
cial space created by their interactions, e.g., occluding the
sight of the audiences, and thus, it is socially inappropriate.
We expect the artificial agent to respect our social space al-
though the boundary of the social space does not physically
exist. This requires social intelligence [31]—an ability to
perceive, model, and predict social behaviors—to be inte-
grated into its functionality.

Joint attention is the primary basis of social intelligence
as it serves as a medium of social interactions; we inter-
act with others via joint attention1. Understanding joint at-
tention, specifically knowing where it is and knowing how
it moves, provides a strong cue to analyze and recognize
group behaviors. It has been recognized that computer vi-

1Gaze directions are correlated with joint attention in quasi-static social
interactions while motion becomes a dominant factor in rapid dynamic
interactions as shown in Figure 3(b).
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Figure 1. We present a method to estimate the likelihood of joint
attention called social saliency from a spatial distribution of social
members. The inset image shows the top view of the reconstructed
scene. The blue points are the points belonging to humans. The
heat map shows the predicted social saliency and we overlay this
map by projecting onto the ground plane in the image.

sion solutions can provide a large scale measurement for de-
veloping a computational representation of joint attention.
The challenges are: (1) human detection and tracking fail-
ure in the presence of occlusions, (2) scene variability, e.g.,
the different number, scale, and orientation of social groups,
and (3) inaccurate measurements of gaze directions.

While there are many factors involved in joint attention,
our main question is: can one predict joint attention using
social formation information alone, without the gaze infor-
mation of each member?

In this paper, we show that it is possible to empirically
learn the likelihood of joint attention called social saliency
as a function of a social formation, a spatial distribution
of social members, using data from first person cameras.
Three key properties of our predictive joint attention model
are: a) it is scale and orientation invariant to social forma-
tions; b) it is invariant to scene context, both indoors and
outdoors; c) it is robust to missing data. Once this model
is constructed, a sparse point cloud representation of hu-
mans can be used to predict the locations of joint attention
as shown in the inset image of Figure 1, without any direc-
tional measurement such as gaze directions—we measure
and learn this predictive model in the first person view, and
apply in the third person view.

To construct such joint attention model, we use first per-
son cameras. With multiple first person cameras, joint at-
tention can be precisely measured in 3D since the ego-
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motion of the cameras follows gaze behaviors of the wear-
ers [2, 9, 23]. Furthermore, we can simultaneously compute
the 3D positions of the wearers to provide precise measure-
ments of social formations. These first person in-situ com-
putational measurements of the geometric relationship be-
tween joint attention and social formation can be applied
in a variety of third person social interaction scenes includ-
ing a basketball game where the players strategically take
advantage of spatial formations.
Contributions To our best knowledge, this is the first work
that provides a predictive model encoding the geometric
relationship between joint attention and social formation,
using in-situ 3D measurements from first person cameras.
This paper presents three core technical contributions: (1) a
construction of a social formation feature that is scale and
orientation invariant inspired by electric dipole moments;
(2) a method of discovering multiple social groups using
scale space extrema in a spatial distribution of social mem-
bers; (3) a consolidation of social interaction data recon-
structed in difference scenes, which allow us to learn and
infer social saliency in a unified coordinate system. Our
method can predict social saliency from a third person video
or image of social interactions.

2. Related Work
A social formation in social interactions is characterized

by the geometric configuration of people. For instance,
a circular formation is created by the audiences around a
street busker while an equilateral triangular formation is of-
ten observed in triadic interactions. Kendon’s characteri-
zation [14] of social formations based on his F-formation
theory states that a spatial distribution of social members
evolves to afford equal accessibility. This characterization
provides a computational template for modeling social in-
teractions. Cristani et al. [7] identified social interactions
in a crowd scene by fitting the location and orientation of
social members into the F-formation template and Setti et
al. [30] extended this framework to handle multiscale for-
mations. Marshall et al. [21] analyzed how physical struc-
tures such as tables and chairs affect social formations and
the efficiency of interactions. Choi et al. [5] generalized
the template to model group activities. In addition to F-
formation, other computational representations such as con-
text [1,6,16,27,28] and proxemics [4,8,32] have been also
used to detect social interactions and activities.

Social formations and location of joint attention are mu-
tually dependent on each other according to the F-formation
theory, and empirically measuring their relationship is es-
sential to computationally model and understand social be-
haviors. Two main approaches are presented towards mea-
suring their relationship: third person approach and first
person approach. With a third person view, Hoffman et
al. [11] combined visual saliency and gaze directions to de-
tect joint attention and Marı́n-Jiménez et al. [20] found peo-
ple looking at each other from rough estimates of gaze di-
rections obtained by HOG features. Prabhakar et al. [24]

learned the causal relationship that propagates through joint
attention in turn-taking interactions. Ousley et al. [22] and
Regh et al. [26] presented a multimodal dataset of dyadic
interactions with human annotated joint attention in the
course of a child autism assessment. Such annotations fa-
cilitated feature extraction from multimodal interaction sig-
nals and spatial and temporal recognition of joint attention.

Detecting accurate gaze directions in a third person view
is a key challenge in measuring joint attention. While head
localization has shown impressive performance via a cas-
cade detector [29], estimating the head orientation from a
third person view is unreliable; state-of-the-art face detec-
tion frameworks [3,20,29] can produce only limited degree
of accuracy.

First person cameras observe other faces at a short dis-
tance thus allowing estimation of gaze directions of peo-
ple around [17, 18]. Pusiol et al. [25] investigated the cor-
relation between joint attention and a care-giver’s location
with respect to a child’s first person camera. Fathi et al. [9]
employed face detection from a first person view to infer
the relative depth and orientation of social members with
respect to the wearer. Park et al. [23] exploited structure
from motion to localize first person cameras in a unified co-
ordinate system and triangulate joint attention in 3D. This
method is not biased by viewpoint and thus, produces ac-
curate measurements of joint attention. Using the joint at-
tention measurements, Arev et al. [2] showed an automatic
video editing tool for multiple first person cameras.

On the modeling side, our approach is to use first person
view to obtain in-situ measurements of both social forma-
tion and joint attention in 3D. We leverage a large collection
of social interaction data reconstructed by the first person
cameras in 3D [23] to learn the geometric model between
joint attention and its social formation. Once this model is
learned, we applied it to a general third person video or im-
age. Note that unlike all previous approaches, our method
predicts the location of joint attention using the social for-
mation without the need for gaze measurements.

3. Social Saliency Prediction

We predict social saliency, the likelihood of joint atten-
tion, using a social formation feature that is designed to
capture the geometric relationship between joint attention
and its members. We learn this relationship from the social
interaction data described in Section 5.

3.1. Social Formation Feature

Let mi denote the location of the ith social member en-
gaging to s joint attention, i.e., the gaze direction of the
member is oriented towards s. Throughout this paper, we
use the 2D configuration of scenes by projecting onto the
ground plane, i.e., m, s ∈ R2, for computational efficiency
but the 3D configuration can be applied without any mod-
ification. We represent a social formation using the social



p

m
r

s

f s

f c

s

r c

s

c

c

  1   2

30

210

60

240

90270

120

300

150

330

180

0

  0.5   1

30

210

60

240

90270

120

300

150

330

180

0

  1   2

30

210

60

240

90270

120

300

150

330

180

0

  1   2

30

210

60

240

90270

120

300

150

330

180

0f s

f c

Social member
Center of mass
Joint attention

Predicted social saliency

Social dipole moment

Social formation feature
Social dipole moment

(a) Social dipole moment

Joint attention
Social member

Detected group scale

Discovered groups

(b) Social group detection

Figure 2. (a) We represent a social formation using the social dipole moment that measures the spatial distribution of social members with
respect to joint attention. This social dipole moment provides a scale and orientation invariant description of the social formation. We
leverage this representation to predict social saliency based on their locations. (b) We detect social groups using scale space extrema (gray
circles) on their spatial distribution. The detected memberships are used to optimally compute the social groups (blue circles) by solving
Equation (2).

dipole moment, p, inspired by electric dipole moments2:

p = s− 1

|S|
∑
i∈S

mi = s− c, (1)

where c is the center of mass of the social members, c =∑
i∈Smi/|S|, and S is the set containing the indices of the

social members engaging to s. Note that the social dipole
moment is normalized by the number of members whereas
the electric dipole moment is not.

This social dipole moment characterizes the location of
joint attention with respect to the first statistics of the so-
cial spatial distribution—the center of mass of social mem-
bers. The direction of the social dipole moment indicates
the dominant gaze direction of the group and the magni-
tude measures the alignment of their gaze directions. For
instance, the direction of the social dipole moment of a
side-by-side dyadic formation is oriented towards what they
roughly look at with large magnitude as their gaze direc-
tions are well aligned.

We represent a spatial distribution of social members
using a social formation feature, f , that captures the ge-
ometric relationship between joint attention and its mem-
bers. The social formation feature is represented by f =[
f sT fcT

]T
where f s and fc are the spatial features cen-

tered at joint attention and the center of mass, respectively.
The kth element of these features is defined as:

f sk = 1
Js
k

∑Js
k
j r̄sj for θk ≤ θsj < θk+1

fck = 1
Jc
k

∑Jc
k
j r̄cj for θk ≤ θcj < θk+1

where Js
k and Js

k are the number of members belonging to
the kth angular bin. r̄sj = ‖s − mj‖/r̄ and r̄cj = ‖c −
mj‖/r̄ are normalized distance by average distance to the
center of mass, i.e., r̄ =

∑
i∈S ‖c − mi‖/|S|. We also

2The electric dipole moment of a molecule of water, H2O, is 1.85 D
due to uneven charge distribution, i.e., hydrogen atoms form 104.48◦ an-
gle with respect to oxygen atom.

normalize the angle of each member based on the direction
of the social dipole moment, i.e., θsj = ∠(mj − s) − ∠p
and θcj = ∠(mj − c)− ∠p.

Figure 2(a) illustrates the social formation features gen-
erated by two groups. Note that the scale and orientation of
the features are normalized by r̄ and ∠p, respectively. Dif-
ferent locations of joint attention given a social formation
yield different features, f s and fc, due to angular normaliza-
tion. This joint attention centric representation is designed
to capture a geometric pattern of formation as a function of
joint attention.

A social formation feature is scale and orientation in-
variant as it is normalized accordingly, which allows us to
directly learn and infer their relationship from diverse for-
mations across different scenes. Note that each social for-
mation has the unique number, scale, and orientation of so-
cial members and this representation transforms them to a
canonical form.

3.2. Prediction
Given social formation features extracted from the first

person social interaction data described in Section 5, we
learn the geometric relationship between joint attention and
its members and predict social saliency of a target scene.
We train a binary ensemble classifier from a collection of
social formation features of the interaction data. 16 angular
bins are used to represent f s and fc. These features con-
stitute the positive training data. We also generate negative
training data by randomly sampling points that retain a dis-
tance from joint attention, i.e., ‖sn − s‖ ≥ εn where sn
is a negative sample point for joint attention, s. The social
formation features for these negative sampled points are ex-
tracted and used as negative training data. To encode the
magnitude of social dipole moment, we discretize ‖p‖ into
50 magnitude bins and train an AdaBoost [10] classifier per
bin. We experimented with several discriminative classifiers
(KNN, Linear SVM, Random Forests, and AdaBoost) and
compare top two classifiers (AdaBoost and Random Forest)
in Section 6.1.



In the prediction stage, we compute the social formation
feature of the target scene based on the estimated mem-
bership described in Section 4. We predict the binary la-
bel of discrete locations in the target scene with the trained
classifier that falls into the same magnitude bin. We gener-
ate a continuous social saliency map by convolving with a
Gaussian kernel. The resulting social saliency map and the
ground truth locations of joint attention are shown in Fig-
ure 2(a). High social saliency forms near the ground truth
locations of joint attention.

4. Social Group Discovery
In social scenes, multiple groups with diverse formations

arise simultaneously from dyadic interactions to crowd in-
teractions. To predict social saliency using a social forma-
tion feature presented in Section 3, the group detection must
be carried out to isolate each social group. In this section,
we present a method to identify the membership of social
groups based on the locations of members. Note that all
previous work [5, 7, 9, 23] discovered social groups based
on the positions and orientations of members whereas we
use the positions only.

We observe that social members often form a circular
and coherent shape as shown in Figure 2(b). Also if the
space allows, two groups do not tend to overlap each other
because that would interfere their interactions. We encode
such properties to detect the multiple groups based on the
locations of the members.

4.1. Scale Space of Social Formation
We find candidates of social groups inspired by a scale

space representation in signal processing. This represen-
tation allows us to discover circular and coherent structures
formed by the spatial distribution of the members in a scene.
Given the locations of the members, {mi}, we convolve
their spatial distribution with a Gaussian kernel, G(x;σ),
where each member is modeled by the Dirac delta function,
δ(mi):

L(x;σ) =

∫
A

G (x−mi;σ) ∗ δ(mi)dx =

N∑
i=1

G(mi;σ).

L is the convolution between the spatial distribution of so-
cial members with the Gaussian kernel. We find the lo-
cal extrema in the scale space approximated by the differ-
ence of Gaussians, D(x, σ) = L(x, kσ) − L(x, σ) [19].
These extrema reflect underlying shape structures in differ-
ent scales. The detected scale space extrema comprises the
set of candidate social groups, G, in the scene.

Each element of the set of candidate social groups, G ∈
G, is represented by a triple, G = {g, k,M} where g and
k are the detected location and scale, and M is a set con-
taining indices of its membership, i.e., i ∈ M if the ith
member belongs to the social group. Each member is as-
signed to groups by measuring the influence of the detected
scale, i.e., i ∈M if G

(
g−mi

kσ ; 1
)
> ε.

4.2. Social Groups Detection
Given a set of social group candidates, G = {Gj}, we

find the minimal subset G∗ that covers all members and has
the desired properties between groups as noted above. This
is equivalent to the set cover problem [13] that finds the
minimum number of sets whose union constitutes the entire
set. We modify the set cover problem to include the inter-
group repulsive force [5] to retain no overlapping groups.
We also penalize the double counted social members by
multiple groups; each member must belong to no more than
one group and therefore, groups do not overlap each other.
The modified set cover problem is formulated as:

minimize
y,ξ1,ξ2

1

2
yTQy + λy1

Ty + λξ
(
1Tξ1 + 1Tξ2

)
(2)

subject to
Vy ≥ 1− ξ1, Vy ≤ 1 + ξ2
y ∈ {0, 1}Y , ξ1, ξ2 ∈ {0, 1}

P ,

where y is a binary indicator vector of the group candidates,
i.e., yj = 1 if Gj ∈ G∗ and zero otherwise. ξ1 and ξ2 are
slack variables allowing social outliers who do not belong
to any social group and double counted members, respec-
tively. The number of social outliers and double counted
members is minimized by 1Tξ1 and 1Tξ2 in the objective
function. Q captures the pairwise relationship defined by
the intergroup distance, Qij = 1/‖gi − gj‖ if i 6= j and
zero otherwise. This quadratic term ensures that joint at-
tention of each group does not form too close each other
assuming joint attention can be approximated by the center
of the circumcircle of the formation. A quantitative evalua-
tion on this approximation will be discussed in Section 6.1.
1Ty minimizes the number of groups. λy and λξ control
the balance between the objectives. V ∈ {0, 1}P×Y is a bi-
nary matrix that indicates whether the ith member belongs
to the jth candidate, i.e., Vi,j = 1 if i ∈Mj , and zero oth-
erwise. Therefore, the ith element of Vy counts the number
of times that the ith member is included in the optimally es-
timated set G∗. P and Y are the number of detected groups
and members, respectively.

This optimization jointly finds the minimal set of social
groups, G∗, and social outliers. In Figure 2(b), we illus-
trate the optimally estimated social groups (blue circles)
based on Equation (2) from all candidates (gray circles).
The detected social groups coincide with membership of the
ground truth joint attention.

Solving Equation (2) is NP-complete as it inherits from
the set cover problem [13]. We solve this optimization us-
ing the commercial optimization software, Gurobi3 that em-
ploys a branch and bound method.

5. Social Interaction Data
We measure joint attention and the locations of associ-

ated members via 3D reconstruction of first person cam-
eras [23]. We manually synchronize cameras and recon-

3http://www.gurobi.com
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Figure 3. (a) We characterize social interactions based on the F-formation theory. The top row shows the spatial distribution of social
members with respect to social formation features. The bottom row illustrates the histograms of social formations given the magnitude of
social dipole moment that measures distance between joint attention and the center of mass. (b) We study a relationship between motion
speed and joint attention. As the speed increases, the velocity direction becomes a strong predictor of gaze directions. (c) We detect the
candidates of social groups using scale space extrema and optimally find the groups by solving Equation (2).

struct all first person cameras in a unified 3D coordinate
system via the standard structure from motion pipeline. The
fixed relationship between a camera and gaze direction is
calibrated by a predefined sequence. We represent a gaze di-
rection using a cone shaped gaze model and superimpose all
gaze models to produce a social saliency field. The modes
of the social saliency field that corresponds to joint atten-
tion are estimated using a meanshift algorithm [23] that au-
tomatically determines the number of joint attention. We
estimate the ground plane via a plane RANSAC and project
the locations of joint attention and its social members to the
ground plane. The social formation feature is extracted in
the projected locations.

Our dataset consists of 20 social interaction scenes that
were partially collected by Park et al. [23] and Arev et
al. [2]4. We add 9 more scenes (B-boy II, B-boy III, B-boy
IV, Class, Busker II, Card game, Hide and seek, Collabo-
rative building, and Group meeting II). Three scenes (Card
game, Hide and seek, and Collaborative building) captured
triadic interactions between children aged 5-6. The entire
dataset contains a total of 49,490 social formations.

We also collect data for basketball games where team
players strategically take advantage of team formations. For
each basketball data, we register all 3D reconstructions into
an NBA standard court (dimension: 94 feet by 50 feet).
This registration allows us to learn the geometric relation-
ship directly in the canonical coordinate system. Two types
of games were captured: one with amateur players and
one with university team players directed by a professional
coach. The entire dataset contains a total of 140,028 for-
mations. The summary of the basketball dataset is listed in
Table 1.

4A few scenes were captured by hand-held cameras that still follow the
gaze behaviors of the camera operators.

Scene N T F Basketball N T F
B-boy I 18 105 317 Amateur 1 10 1380 6750
B-boy II 18 450 1351 Amateur 2 8 900 4199
B-boy III 18 160 528 Amateur 3 10 1740 35843
B-boy IV 18 50 180 Univ. team 1 9 2516 25138
Surprise party 11 120 2227 Univ. team 2 10 2609 23150
Class 11 360 3590 Univ. team 3 10 2853 25335
Croquet 6 300 6000 Univ. team 4 10 2186 19613
Busker I 6 120 3566
Busker II 6 180 5394
Card game 3 180 768
Hide and seek 3 180 214
Block building 3 700 2702
Social game 8 450 2086
Meetings I 11 120 832
Meetings II 5 44 1120
Picnic 6 60 965
Musical 7 180 2184
Dance 6 180 5301
4 way party 11 180 1909
Snowman 4 753 8256

Table 1. First person social interaction data (N : the number of
members; T : duration (sec); F : the number of formations)

5.1. Data Analysis

Based on the social interaction data, we characterize so-
cial formations evolving in natural interactions. According
to the F-formation theory, the social space evolves to afford
equal accessibility to all social members. In Figure 3(a),
we quantitatively identify such space from dyadic, triadic,
and polyadic (more than four members) interactions. The
top row illustrates the distribution of social members with
respect to the social formation feature, f s, i.e, the joint at-
tention located at the center and the spatial distribution of
social members is normalized by its scale and orientation.
For dyadic interactions, joint attention primarily forms near
one of two in vis-a-vis interactions; many members are co-
located with joint attention. The L-shape or side-by-side
interactions are captured as the two downward parallel tails
in the graph, i.e., joint attention forms out of the line con-
necting the two. This distribution changes as the number
of interacting people increases. In the polyadic interactions,
they form a circular shape around joint attention that affords



to equal accessibility to social members; few members are
located at the center. In the bottom row, we show the his-
togram of social formations given the magnitude of a social
dipole moment, ‖p‖, that measures the distance between
joint attention and the center of mass. As the number of
interacting people increases, the distance becomes shorter
with low variance (see the standard deviation of the center
of mass in the top row). This indicates that people form
a circular formation centered at their joint attention, which
affords equal accessibility and this analysis quantitatively
confirms the F-formation theory.

In Figure 3(b), we show a predictive power of joint at-
tention when social members are dynamic. Joint attention
is a strong predictor of gaze directions of social members
when they are quasi-static. Once they start to move, their
gaze directions tend to deviate from the joint attention, i.e.,
they less likely look at what others are looking at but tend
to align with the directions of their motion. This analysis
concurs with a study on time scale dependency of visual
perception [12].

6. Result
We apply our method to predict social saliency in real-

world social scenes by leveraging the social interaction data
captured by first person cameras. For the quantitative eval-
uation, we use the locations of joint attention in the data as
the ground truth. For the qualitative evaluation, we apply
our method to third person videos.

6.1. Quantitative Evaluation
In this section, we quantitatively evaluate our method in

two criteria: group detection and social saliency prediction.
Group detection We detect social groups by solving a
binary quadratic programming in Equation (2). The de-
tected social groups are compared with the ground truth
social groups obtained by the first person camera data.
Accuracy of the group detection is defined by A =

1
Ng

∑Ng

i=1 max
j

{
n(Mg

i∩M
d
j )

n(Mg
i∪Md

j )

}
where Mg

i and Md
j are the

membership index set of the ith ground truth group and the
jth detected group, respectively. n(·) counts the number
of elements in the set and Ng is the number of ground truth
groups. The mean accuracy of the group detection is 0.8169
with 0.0964 standard deviation for all first person camera
data. In Figure 3(c), we show the mean accuracy of each
scene with standard deviation (a few scenes are omitted as
they are highly similar to other scenes). Accurate detection
is achieved for the scenes with regular social interactions
such as the Busker II, Musical, and Group meeting I. When
a scene is chaotic such as the Surprise party, the detection
accuracy is relatively low (53%).
Social saliency prediction We compare our method
(SFF+Boosting) with four baseline methods: Ran-
dom forests predictor with our social formation feature
(SFF+RF), predictor using the center of circumcircle (CC),
predictor using the center of mass (COM), and predictor

with context feature (CF). We exclude the target scene when
we train the classifiers. Note that no previous method used
the locations of social members to predict joint attention,
i.e., a comparison with a baseline method without a triv-
ial modification is not available. Instead, we compare with
geometric predictors (CC and COM) and a predictor (CF)
based on context features that were used in group activity
recognition [6, 16].

A context feature (CF) is a member centric represen-
tation while a social formation feature is a joint attention
centric representation. The context feature is computed by
pooling the number of members in each angular and radial
bin for each member. We train AdaBoost classifiers for the
context features as described in Section 3.

We evaluate our prediction with the ground truth joint at-
tention. We convolve the ground truth joint attention with a
Gaussian kernel to produce the ground truth social saliency.
We measure the area in a scene that corresponds to higher
social saliency than a certain threshold. The true positive
and false positive rate are computed by changing the thresh-
old in the ground truth and predicted social saliency.

Figure 4 shows ROC curves for each predictor. The in-
set images illustrate the configuration of social members,
joint attention, the center of mass, the center of circum-
circle, and predicted social saliency from the top view of
the scene. The mean average precisions5 are listed in Ta-
ble 2. The predictors based on our social formation feature
(SFF+Boosting and SFF+RF) outperform other predictors.
Note that the center of circumcircle predictor (CC) is also a
strong predictor for joint attention when the group forms a
circular formation such as the Dance and B-boy I scenes.

For basketball scenes, we modify our social formation
feature and prediction procedure because (1) the scenes are
registered in a canonical basketball dimension unlike other
scenes and thus, we can exploit the location feature, and (2)
the formation of joint attention is often dominated by the
motion of players. We augment instant velocity of the cen-
ter of mass (2 dimensional vector) on the social formation
feature, which can handle missing data due to player detec-
tion failures. Also we discretize the canonical court with
94 by 50 grids and train a classifier for each grid indepen-
dently. This discretization exhibits stronger discriminative
power on the prediction and efficient computation. We com-
pare the modified social formation feature with the original
feature and the geometric predictors6 as shown in Figure 4
and Table 2. The modified feature outperforms other repre-
sentations with large margin, which indicates motion plays
a pivotal role to localize joint attention.

5The absolute value of the mean average precision is dependent on spar-
sity of data points. For instance, the Picnic scene is fairly large comparing
to the interaction area that results in low precision for all methods.

6We do not compare our method with the ROI detection work [15] be-
cause they require a temporal association of each player to estimate a mo-
tion field.
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Figure 4. We compare our method with the geometric predictors and predictor using context feature. The center of circumcircle (CC) is
a strong geometric predictor in regular social scenes. We also compare with the predictor using the center of mass (COM). The predictor
based on the context feature (CF) which is a member centric representation is also compared. The inset image shows the configuration
of social members, joint attention, the center of mass, the center of circumcircle, and predicted social saliency from the top view of the
scene. For basketball scenes, we augment instant velocity of the center of mass on the social formation feature. This feature significantly
improves the precision of the joint attention prediction.

Scene SFF+Boosting SFF+RF CC COM CF
Dance 0.2769 0.1381 0.3299 0.0419 0.0106
Meeting I 0.2941 0.3599 0.2418 0.2350 0.0649
B-boy I 0.7178 0.6907 0.2078 0.1232 0.1225
Class 0.7678 0.7386 0.1445 0.2757 0.1873
Busker I 0.2919 0.2059 0.3432 0.1929 0.0103
Picnic 0.1364 0.1349 0.1115 0.1808 0.0244
Social game 0.5425 0.4419 0.3461 0.2463 0.0020
Scene SFF+velocity SFF CC COM
Basketball 0.7709 0.1210 0.0987 0.0977

Table 2. Mean average precision

6.2. Qualitative Evaluation
We apply our method on real-world examples involved

with various social interactions. Given a video or a set of
images, we reconstruct the scene in 3D using structure from
motion. A main benefit of using the social formation feature
is that it does not require directional measurements such as
gaze directions where a sparse point cloud representation of
humans can be used for prediction. We use a point cloud
associated with heads identified by the head detector [20] to
predict social saliency. The 3D reconstructed point cloud is
projected to the ground plane and the projected point cloud
is used to discover groups and predict social saliency.

Figure 1 and Figure 5(a) illustrate our results on social
saliency prediction. We collect five social interaction scenes
using a cellphone camera from third person view includ-
ing the Halloween show, Cafeteria, Busker, Classroom, and
Flash mob scenes. For all scenes, we overlay social saliency
by projecting onto the ground plane. The configurations of
the scenes from the top view are shown on the right column.
Two social groups and three groups are detected in the Cafe-
teria and Flash mob scenes, respectively. From the Cafete-
ria and Classroom scenes, our prediction allows us to iden-
tify structure associated with social interactions such as the
space near couches and podium. In the Busker scene, joint
attention forms near the center of circumcircle where the
busker was located. We also apply our method to YouTube
videos captured at Time Square7 and Louvre museum8. In
the Time Square scene, our method correctly recognize the

7https://www.youtube.com/watch?v=ezyrSKgcyJw
8https://www.youtube.com/watch?v=VPjgsgLDu08

social space created by the photographers and subject with
Muppet characters. Also we predict social saliency that
forms around the Mona Lisa painting in the Louvre scene.

We also present our results on basketball scenes captured
by third person view9 in Figure 5(b). We register each frame
to the canonical court. The modified social saliency feature
(Section 6.1) is extracted by the locations of the feet of the
players detected by [33]. The detected players and predicted
social saliency are shown in the inset image and overlaid on
the image. Our method correctly localizes social saliency in
the presence of missing data.

7. Discussion
In this paper, we present a method to predict joint atten-

tion with a social formation feature that encodes the geo-
metric relationship between joint attention and its members.
We detect social groups using scale space extrema. We
leverage the social interaction data captured by first person
cameras that precisely measures joint attention to predict
social saliency in real-world videos and images captured by
third person views.

This work introduces a new way of using the data pro-
duced by first person cameras. We primarily use them in
terms of social statics that describes how a social forma-
tion exerts a force on the joint attention. As demonstrated
by the basketball scenes, motion is another driving force to
form joint attention. One future direction is understanding
social dynamics regarding motion, inertia, and stability of
joint attention.

Figure 6. Prediction fails due to detection failure or unstructured
formation.

Limitations Our method is primarily dependent on local-
ization of social members. Failures on detection and un-
structured formations cause erroneous prediction as shown
in Figure 6.

9https://www.youtube.com/watch?v=f6a3B499nwY
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Figure 5. We apply our method to predict social saliency on third person videos. (a) We identify social space (space around the photog-
raphers and subject with the Muppet characters and space near Mona Lisa painting) in the Time Square and Louvre scenes obtained from
YouTube. Multiple social groups are detected in the Cafeteria and Flash mob scenes. In the Busker and Classroom scenes, joint attention
forms around the busker and podium. (b) We use the modified social formation feature to predict social saliency in a basketball game.
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