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Retrieving videos of a specific person given his/her face image as query
becomes more and more appealing for applications like smart movie fast-
forwards and suspect searching. It also forms an interesting but challeng-
ing computer vision task, as the visual data to match, i.e., still image and
video clip are usually represented quite differently. Typically, face image
is represented as point (i.e., vector) in Euclidean space, while video clip is
seemingly modeled as a point (e.g., covariance matrix) on some particular
Riemannian manifold in the light of its recent promising success. It thus in-
curs a new hashing-based retrieval problem of matching two heterogeneous
representations, respectively in Euclidean space and Riemannian manifold.
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Figure 1: A conceptual illustration of TV-Series (the Big Bang Theory) char-
acter shots retrieval, where the query is an image of one specific character
(Sheldon Cooper), and all the shots containing him/her are retrieved and
ranked according to their similarities to the query image.

This work makes the first attempt to embed the two heterogeneous s-
paces into a common discriminant Hamming space. Specifically, we pro-
pose Hashing across Euclidean space and Riemannian manifold (HER) by
deriving a unified framework to firstly embed the two spaces into corre-
sponding reproducing kernel Hilbert spaces (Fig. 2), and then iteratively
optimize the intra- (Eqn. (2) and Eqn. (3)) and inter-space (Eqn. (4)) Ham-
ming distances in a max-margin framework to learn the hash functions for
the two spaces.

min
We,Wr ,ξe,ξr ,Be,Br

λ1Ee +λ2Er +λ3Eer

+ γ1 ∑
k∈{1:K}

∥∥∥wk
e

∥∥∥2
+C1 ∑

k∈{1:K}
i∈{1:N}

ξ
ki
e

+ γ2 ∑
k∈{1:K}

∥∥∥wk
r

∥∥∥2
+C2 ∑

k∈{1:K}
i∈{1:N}

ξ
ki
r

(1)

s.t.Bki
e = sgn(wk

e
T

ϕ(xi)),∀k ∈ {1 : K}, i ∈ {1 : N}

Bki
r = sgn(wk

r
T

η(Yi)),∀k ∈ {1 : K}, i ∈ {1 : N}

Bki
r (w

k
e

T
ϕ(xi))≥ 1−ξ

ki
e ,ξ ki

e > 0,∀k ∈ {1 : K}, i ∈ {1 : N}

Bki
e (w

k
r

T
η(Yi))≥ 1−ξ

ki
r ,ξ ki

r > 0,∀k ∈ {1 : K}, i ∈ {1 : N}.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 2: The difference between traditional multiple modalities hash learn-
ing methods (the left figure) and our heterogeneous hash learning method
(the right figure), where different shapes (i.e., triangles and circles) denote
categories.

Ee=∑
c∈{1:C}

∑
m,n∈c

d(Bm
e ,B

n
e)−λe ∑

c1∈{1:C}
p∈c1

∑
c2∈{1:C}

c1 6=c2,q∈c2

d(Bp
e ,B

q
e) (2)

Er =∑
c∈{1:C}

∑
m,n∈c

d(Bm
r ,B

n
r )−λr ∑

c1∈{1:C}
p∈c1

∑
c2∈{1:C}

c1 6=c2,q∈c2

d(Bp
r ,B

q
r ) (3)

Eer =∑
c∈{1:C}

∑
m,n∈c

d(Bm
e ,B

n
r )−λer ∑

c1∈{1:C}
p∈c1

∑
c2∈{1:C}

c1 6=c2,q∈c2

d(Bp
e ,B

q
r ) (4)

To evaluate HER, we conduct video face retrieval experiments on two
hot American TV-Series, i.e., the Big Bang Theory and Buffy the Vampire
Slayer. Extensive experimental results (Table 1) demonstrate the superi-
ority of HER over the state-of-the-art competitive hash learning methods,
and such superiority mainly benefits from three points: 1) the integration of
intra- and inter-space discriminability constraints (i.e., Ee, Er, and Eer) via
an iterative optimization based on Hamming distance; 2) the two-step archi-
tecture, i.e., Euclidean space (Riemannian manifold) to RKHS and then to
common Hamming space, involves nonlinear maps from the original spaces
into high dimensional Hilbert spaces, which would yield much richer rep-
resentations of the original data distributions; 3) the max-margin strategy
accomplished by SVM further ensures the stability and generalizability of
the learned hash functions, which is a crucial element for practical retrieval
system.

Table 1: Comparison with the state-of-the-art single modality and multiple
modalities hash learning methods with mAP on the Big Bang Theory. K
means the length of hash code.

Hashing Method the Big Bang Theory
K = 16 K = 32 K = 64 K = 128

LSH [Indyk & Motwani, STC’98] 0.2086 0.2092 0.1963 0.1994
SH [Weiss, NIPS’08] 0.2652 0.2665 0.2623 0.2673

ITQ [Gong, CVPR’11] 0.3025 0.2989 0.3029 0.3060
SSH [Wang, CVPR’10] 0.2855 0.2662 0.2584 0.2586

DBC [Rastegari, ECCV’12] 0.4495 0.4235 0.4005 0.3867
KSH [Liu, CVPR’12] 0.4366 0.4454 0.4567 0.4604

SITQ [Gong, CVPR’11] 0.3909 0.4298 0.4576 0.4799
CMSSH [Bronstein, CVPR’10] 0.2047 0.2143 0.2024 0.2478

CVH [Kumar & Udupa, IJCAI’11] 0.2110 0.2092 0.2231 0.2407
PLMH [Zhai, IJCAI’13] 0.2447 0.2461 0.2487 0.2608

PDH [Rastegari, ICML’13] 0.2949 0.2903 0.3095 0.2916
MLBE [Zhen & Yeung, KDD’12] 0.2600 0.2648 0.3917 0.3858

MM-NN [Masci, PAMI’13] 0.3955 0.4664 0.5124 0.4922
HER 0.5049 0.5227 0.5490 0.5539

The matlab implementation of HER can be downloaded from http://vipl.ict.ac.
cn/resources/codes.
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