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Abstract

A number of recent studies have shown that a Deep Con-
volutional Neural Network (DCNN) pretrained on a large
dataset can be adopted as a universal image descriptor, and
that doing so leads to impressive performance at a range of
image classification tasks. Most of these studies, if not all,
adopt activations of the fully-connected layer of a DCNN
as the image or region representation and it is believed that
convolutional layer activations are less discriminative.

This paper, however, advocates that if used appropri-
ately, convolutional layer activations constitute a pow-
erful image representation. This is achieved by adopt-
ing a new technique proposed in this paper called cross-
convolutional-layer pooling. More specifically, it extracts
subarrays of feature maps of one convolutional layer as lo-
cal features, and pools the extracted features with the guid-
ance of the feature maps of the successive convolutional
layer. Compared with existing methods that apply DCNNs
in the similar local feature setting, the proposed method
avoids the input image style mismatching issue which is
usually encountered when applying fully connected layer
activations to describe local regions. Also, the proposed
method is easier to implement since it is codebook free
and does not have any tuning parameters. By applying
our method to four popular visual classification tasks, it is
demonstrated that the proposed method can achieve compa-
rable or in some cases significantly better performance than
existing fully-connected layer based image representations.

1. Introduction

Recently, Deep Convolutional Neural Networks (DC-
NNss) have attracted a lot of attention in visual recognition,
largely due to their performance [1]. It has been discov-
ered that the activation of a DCNN pretrained on a large
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dataset, such as ImageNet [2], can be employed as a univer-
sal image representation, and applying this representation
to many visual classification problems delivers impressive
performance [3, 4]. This discovery quickly sparked signifi-
cant interest, and inspired a number of extensions, including
[5, 6]. A fundamental issue with this kinds of methods is
how to generate an image representation from a pretrained
DCNN. Most current solutions, if not all, take activations
of the fully connected layer as the image representation. In
contrast, activations of convolutional layers are rarely used
and some studies [7, 8] have reported that directly using
convolutional layer activations as image features produces
inferior performance.

In this paper, however, we advocate that convolutional
layer activations form a powerful image representation if
they are used appropriately. We propose a new method
called cross-convolutional layer pooling (or cross layer
pooling for short) to derive discriminative features from
from convolutional layers. This new technique relies on two
crucial components: (1) we utilize convolutional layer ac-
tivations in a ‘local feature’ setting in which subarrays of
convolutional layer activations are extracted as region de-
scriptors. (2) we pool extracted local features by using acti-
vations from two successive convolutional layers.

The first component is motivated by recent work [5, 6, 9]
which has shown that DCNN activations are not translation
invariant and that it is beneficial to extract fully connected
layer activations from a DCNN to describe local regions and
create the image representation by pooling multiple regional
DCNN activations. Our method steps further to use subar-
rays of convolutional layer activations, that is, parts of CNN
convolutional activations as regional descriptors. Compared
with previous work [5, 6], our method avoids the image
style mismatching issue which is commonly encountered
in existing methods. More specifically, existing methods
[5, 6, 9] essentially apply a network trained for represent-
ing an image to represent a local region. Thus, the image
styles at the test stage do not match those of the training
stage. This mismatching may degrade the discriminative
power of DCNN activations. In contrast, our method uses
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the whole image as the network input at both training and
testing stages.

The second component is motivated by the parts-based
pooling method [10] which was originally proposed for
fine-grained image classification. This method creates one
pooling channel for each detected part region with the fi-
nal image representation obtained by concatenating pool-
ing results from multiple channels. We generalize this idea
into the context of DCNNs and avoid the need for prede-
fined parts annotation. More specifically, we deem the fea-
ture map of each filter in a convolutional layer as the detec-
tion response map of a part detector and apply the feature
map to weight regional descriptors extracted from previous
convolutional layer in the pooling process. The final im-
age representation is obtained by concatenating pooling re-
sults from multiple channels with each channel correspond-
ing to one feature map. Note that unlike existing regional-
DCNN based methods [5, 6], the proposed method does not
need any additional dictionary learning and encoding steps
at both training and testing stages. To further reduce the
memory usage in storing image representations, we also
experiment with a coarse ‘feature sign quantization’ com-
pression scheme and show that the discriminative power of
the proposed representation can be largely maintained after
compression.

We conduct extensive experiments on four datasets cov-

ering four popular visual classification tasks, that is, scene
classification, fine-grained object classification, generic ob-
ject classification and attribute classification. Experimental
results suggest that the proposed method can achieve com-
parable and in some cases significantly better performance
than competitive methods.
Preliminary: Our network structure and model parameters
are identical to those in [1], that is, we have five convolu-
tional layers and two fully connected layers. We use conv-
1, conv-2, conv-3, conv-4, conv-5, fc-6, fc-7 to denote them
respectively. At each convolutional layer, multiple filters
are applied and it results in multiple feature maps, one for
each filter. In this paper, we use the term ‘feature map’ to
indicate the convolutional result (after applying the ReLU)
of one filter and the term ‘convolutional layer activations’ to
indicate feature maps of all filters in a convolutional layer.

2. Existing ways to create image representa-
tions from a pretrained DCNN

In literature, there are two major ways of using a pre-
trained DCNN to create image representations for image
classification: (1) directly applying a pretrained DCNN to
the input image and extracting its activations as the image
representation; (2) applying a pretrained DCNN to the sub-
regions of the input image and aggregating activations from
multiple regions as the image representation.

Usually, the first way takes the whole image as the in-

Figure 2: This figure demonstrates the image style mis-
match issue when using fully-connected layer activations as
regional descriptors. Top row: input images that a DCNN
‘sees’ at the training stage. Bottom row: input images that
a DCNN ‘sees’ at the test stage.

put to a pretrained DCNN and extracts the fc-6/fc-7 activa-
tions as the image-level representation. To make the net-
work better adapted to a given task, fine-tuning sometimes
is applied. Also, to make this kind of method more robust
to image transforms, averaging activations from several jit-
tered versions of the original image, e.g. several slightly
shifted versions of the input image, has been employed to
obtain better classification performance [4].

DCNNSs can also be applied to extract local features. It
is suggested that DCNN activations are not invariant to a
large amount of translation [5] and the performance will be
degraded if input images are not well aligned. To handle
this issue, it has been suggested to sample multiple regions
from an input image and use one DCNN, called regional-
DCNN in this scenario, to describe each region. The final
image representation is aggregated from activations of those
regional-DCNNs [5]. In [5], another layer of unsupervised
encoding is employed to create the image-level represen-
tation [5, 6]. It is shown that for many visual tasks [5, 6]
this kind of method lead to better performance than directly
extracting DCNN activations as global features.

One common factor in the above methods is that they all
use fully-connnected layer activations as features. The con-
volutional layer activations are not usually employed and
preliminary studies [7, 8] have suggested that the convolu-
tional layer activations have weaker discriminative power
than activations of the fully-connected layer.

In image detection, the use of convolutional layers has
been recently explored [11, 12]. In these works, the candi-
date object representations are extracted from the convolu-
tional layer by either directly pooling convolutional feature
maps [12] or pooling them by using a spatial pyramid [11].
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Figure 1: The overview of the proposed method.

Figure 3: A depiction of the process of extracting local fea-
tures from a convolutional layer.

3. Proposed Method
3.1. Convolutional layers vs. fully-connected layers

One major difference between convolutional and fully-
connected layer activations is that the former is embedded
with rich spatial information while the latter is not. The con-
volutional layer activations can be formulated as a tensor of
the size H x W x D, where H, W denote the height and
width of each feature map and D denotes the number of fea-
ture maps. Essentially, the convolutional layer divides the
input image into H x W regions and uses D-dimensional
feature maps (filter responses) to describe the visual pattern
within each region. Thus, convolutional layer activations
can be viewed as a 2-D array of D-dimensional local fea-
tures with each one describing a local region. For the sake
of clarity, we name each of the H x W regions as a spa-
tial unit, and the D-dimensional feature maps correspond-
ing to a spatial unit as the feature vector in a spatial unit.
The fully-connected layer takes the convolutional layer ac-
tivations as the network input and transforms them into a
feature vector representing the whole image. Spatial infor-

mation is lost through this process, meaning that the fea-
ture vector corresponding to a particular spatial area cannot
be recovered from the activations of the subsequent fully-
connected layer.

As mentioned in section 2, DCNNs can also be applied
to image patches, to extract local features, as a means of
compensating for the fact that they are not translation invari-
ant. This approach has a significant disadvantage, however,
in as much as the network will then be applied to patches,
that have significantly different statistics to the whole im-
ages on which the network was trained. This is because,
when applied as a regional feature transform, a DCNN is
essentially used to describe local visual patterns which cor-
respond to small parts of objects rather than the whole im-
ages used for training. Figure 2 shows some training im-
ages from the ImageNet dataset and a set of resized local
regions. As can be seen, although they all have the same
image size, their appearance and level of detail are quite
different. Thus, blindly applying fully-connected layer acti-
vations as local features introduces a significant input image
style mismatch which could potentially undermine the dis-
criminative power of DCNN activations.

Our proposal for avoiding the aforementioned drawback
is to extract multiple regional descriptors from a single
DCNN applied to a whole image. We realize this idea
by leveraging the spatial information within convolutional
layers. More specifically, in convolutional layers, we can
easily locate a subset of activations which correspond to
a local region. These subsets of activations correspond to
a set of subarrays of convolutional layer activations and
we use them as local features. Figure 3 demonstrates the
extraction of such local features. For example, we can
first extract D-dimensional feature vectors from regions
1,2,3,14,15,16,27,28,29 and concatenate them into a
9 x D-dimensional feature vector and then shift one unit
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Figure 4: Visualizing of some feature maps extracted from
the 5th layer of a DCNN.

along the horizontal direction to extract features from re-
gions 2,3,4,15,16,17,28,29,30. After scanning all the
13 x 13 feature maps we obtain 121 (omitting boundary
spatial units) (9 x D)-dimensional local features.

It is clear that in the proposed method the input of the
DCNN is still a whole image rather than local regions. Thus
the input image style mismatch issue is avoided. Note that
in our method, we extract regional features from multiple
spatial units and concatenate the corresponding feature vec-
tors. This is as opposed to the approach in [12] (although
developed for a different application) which treats the fea-
ture vector from one spatial unit as the local feature. We find
that the use of feature vectors from multiple spatial units
can significantly boost classification performance. This is
because the feature vector from a single spatial unit may
not be descriptive enough to characterize the visual pattern
within a local region.

3.2. Cross-convolutional-layer Pooling

After extracting local features from a convolutional
layer, one can directly perform traditional max-pooling or
sum-pooling to obtain the image-level representation. In
this section, we propose an alternative pooling method
which can significantly improve classification performance.
The proposed method is inspired by the parts-based pool-
ing strategy [10] used in fine-grained image classification.
In this strategy, multiple regions-of-interest (ROI) are first
detected, with each corresponding to one human-specified
object part, e.g. the tails of birds. Then local features falling
into each ROI are then pooled together to obtain a pooled
feature vector. Given D object parts, this strategy creates D
different pooled feature vectors and these vectors are con-
catenated together to form the image representation. It has
been shown that this simple strategy achieves significantly
better performance than blindly pooling all local features
together. Formally, the pooled feature from the kth ROI,
denoted as P, can be calculated by the following equation

(let’s consider sum-pooling in this case):

P => xli, @)
i=1

where x; denotes the ith local feature and I; ;, is a binary
indicator map indicating whether x; falls into the kth ROI.
We can also generalize I; j, to real values with its value indi-
cating the ‘membership’ of a local feature to a ROI. Essen-
tially, each indicator map defines a pooling channel and the
image representation is the concatenation of pooling results
from multiple channels.

However, in a general image classification task, there is
no human-specified parts annotation, and even for many
fine-grained image classification tasks the annotation and
detection of these parts are usually non-trivial. To handle
this situation, in this paper, we propose to use feature maps
of the (¢ + 1)th convolutional layer as Dy indicator maps.
By doing so, Dy pooling channels are created for the lo-
cal features extracted from the ¢-th convolutional layer. We
call this method cross-convolutional-layer pooling or cross-
layer pooling in short. The use of feature maps as indicator
maps is motivated by the observation that a feature map of
a deep convolutional layer is usually sparse and indicates
some semantically meaningful regions'. This observation
is illustrated in Figure 4. In Figure 4, we choose two im-
ages taken from two datasets, Birds-200 [13] and MIT-67
[14]. We randomly sample some feature maps from 256
feature maps in conv5 and overlay them on the original im-
ages for better visualization. As can be seen from Figure
4, the activated regions of the sampled feature map (high-
lighted in warm color) are actually semantically meaning-
ful. For example, the activated region in top-left corner of
Figure 4 corresponds to the wing-part of a bird. Thus, the
filter of a convolutional layer works as a part detector and
its feature map serves a similar role as the part region in-
dicator map. Certainly, compared with the parts detector
learned from human-specified part annotations, the filter of
a convolutional layer is usually not directly task-relevant.
However, the discriminative power of our image represen-
tation can benefit from combining a much larger number of
indicator maps, e.g. 256 as opposed to 20-30 (the number
of parts usually defined by human), which is akin to ap-
plying bagging to boost the performance of multiple weak
classifiers.

Formally, the image representation extracted from cross-
layer pooling can be expressed as follows:

Pt — [P§T7P§T7... ,PZT7--~ th;H]T
Ny
where, P} = Z xffaf]gl, 2)

)
i=1

INote that similar observation has also been made in [7].
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where P* denotes the pooled feature for the t-th convolu-
tional layer, which is calculated by concatenating the pooled
feature of each pooling channel P{ &k = 1,---  Dyyq. x!
denotes the ¢-th local feature in the ¢-th convolutional layer.
Note that feature maps of the (¢ + 1)-th convolutional layer
are obtained by convolving the feature maps of the ¢-th con-
volutional layer with a m X n-sized kernel. So if we extract
local features x! from each m X n spatial unit in the ¢-th
convolutional layer then each x! naturally corresponds to a
spatial unit in the (¢ 4+ 1)-th convolutional layer. Let us de-
note the feature vector in this spatial unit as a/™' € RPt+1
and the value at its k-th dimension as a{!'. Then we use

aff,;l to weight local feature x! in the k-th pooling channel.

Implementation Details: In our implementation, we per-
form PCA on x! to reduce the dimensionality of P*. Also,
we apply power normalization to P?, that is, we use Pt =
sign(P?)/|P?| as the image representation to further im-
prove performance. We also tried directly using sign(P?)
as an image representation, that is, we coarsely quantize P*
into {—1,1,0} according to the feature sign of P*. A sim-
ilar strategy has been previously applied to convolutional
features in [8] and it is reported to produce worse perfor-
mance. However, to our surprise, our experiments show
that this operation does not significantly decrease the per-
formance of our cross-layer pooling representation. This
observation allows us to simply use 2-bits to represent each
feature dimension which significantly reduces the memory
requirement for storing image representations. Please refer
to section 4.3.3 for a more detailed discussion.

4. Experiments

We evaluate the proposed method on four datasets: MIT
indoor scene-67 (MIT-67 in short) [14], Caltech-UCSD
Birds-200-2011 [13] (Birds-200 in short), PASCAL VOC
2007 [15] (PASCAL-07 in short) and H3D Human At-
tributes dataset [16] (H3D in short). These four datasets
cover several popular topics in image classification, that
is, scene classification, fine-grained object classification,
generic object classification and attribute classification.
Previous studies [3, 4] have shown that using activations
from the fully-connected layer of a pretrained DCNN leads
to surprisingly good performance on those datasets. Here,
in our experiments, we further compare different ways of
extracting image representations from a pretrained DCNN.
We organized our experiments into two parts, the first com-
pares the proposed method against other competitive meth-
ods and the second examines the impact of various compo-
nents of our method.

4.1. Experimental protocol

We compare the proposed method against three base-
lines, they are: (1) directly using fully-connected layer ac-
tivations for the whole image (CNN-Global); (2) averaging

Table 1: Comparison of results on MIT-67. The lower part
of this table lists some results reported in the literature. The
proposed methods are marked with *.

Methods Accuracy Remark
CNN-Global 57.9% -
CNN-Jitter 61.1% -

R-CNN SCFV [6] 68.2% -

*CL-45 64.6% -

*CL-45F 65.8% -

*CL-45C 68.8% -

*CL + CNN-Global 70.0% -

*CL + CNN-Jitter 71.5% -
Fine-tuning [4] 66.0% fine-tunning on MIT-67
MOP-CNN [5] 68.9% three scales
VLAD level2 [5] 65.5% single scale
CNN-SVM [3] 58.4% -

FV+DMS [17] 63.2% -

DPM [18] 37.6% -

fully-connected layer activations from several transformed
versions of an input image. Following [3, 4], we transform
the input image by cropping its four corners and middle
regions as well as by creating their mirrored versions; (3)
the method in [6]. It extracts fully-connected layer CNN
activations from multiple regions in an image and encodes
them using sparse coding based Fisher vector encoding (R-
CNN SCFV). Since R-CNN SCFV has demonstrated su-
perior performance to the MOP method in [5], we do not
include MOP in our comparison. To make fair comparison,
we reimplement all three baseline methods.

For all methods, we adopt the pretrained Alex net [1]
provided in the caffe [19] package to extract CNN activa-
tions. We experiment with two resolutions for extracting
convolutional features. The first sets the size of the 4th and
5th convolutional layers to be 13 x 13 spatial units, which
is the default option in the Caffe implementation. We also
tried a finer spatial resolution which uses 26 x 26 spatial
units (we choose 26 x 13 spatial resolution for H3D be-
cause most images in H3D have greater height than width).

In the first part of our experiments, we report the results
obtained using the 4th and 5th convolutional layer since
this achieves the best performance. We denote our meth-
ods as CL-45, CL-45F, CL-45C, corresponding to the set-
tings of applying our method to the default spatial resolu-
tion, to finer resolution and combining representations from
two different resolutions, respectively. We also describe a
similar experiment on the 3-4th layer of a DCNN in the sec-
ond part of experiments and denote them as CL-34, CL-34F
and CL-34C respectively. To reduce the dimensionality of
the image representations we perform PCA on local features
extracted from convolutional layers and reduce their dimen-
sionality to 500 before cross-layer pooling. In practice, we



find that reducing to higher dimensionality only slightly in-
creases the performance. We use libsvm [20] as the SVM
solver and use precomputed linear kernels as inputs. This
is because the calculation of linear kernels/Gram matrices
can be easily implemented in parallel. When feature di-
mensionality is high the kernel matrix computation actually
occupies most of computational time. Thus it is appropriate
to use parallel computing to accelerate this process.

4.2. Performance evaluation
4.2.1 Classification Result

Scene classification: MIT-67. MIT-67 is a commonly used
benchmark for evaluating scene classification algorithms, it
contains 6700 images with 67 indoor scene categories. Fol-
lowing the standard setting, we use 80 images in each cat-
egory for training and 20 images for testing. The results
are shown in Table 1. It can be seen that all the variations
of our method (methods with ‘*’ mark in Table 1) outper-
forms the methods that use DCNN activations as global fea-
tures (CNN-Global and CNN-Jitter). This clearly demon-
strates the advantage of using DCNN convolutional acti-
vations as local features. We can also see that the perfor-
mance obtained by combining CL-45 and CL-45F, denoted
as CL-45C, has already achieved the same performance
as the regional-CNN based methods (R-CNN SCFV and
MOP-CNN). Moreover, combining with the global-CNN
representation, our method can obtain further performance
gain. By combining CL-45C with CNN-Jitter, our method,
denoted as CL+CNN-Global and CL+CNN-Jitter respec-
tively, achieves impressive classification accuracy 71.5%.
Fine-grained image classification: Birds-200. Birds-200
is the most popular dataset in fine-grained image classifica-
tion research. It contains 11788 images with 200 different
bird species. This dataset provides ground-truth annotations
of bounding boxes and parts of birds, e.g. the head and the
tail, on both the training set and the test set. In this ex-
periment, we just use the bounding box annotation. The
results are shown in Table 2. As can be seen, the proposed
method performs especially well on this dataset. Even CL-
45 achieves 72.4% classification accuracy, a 6% improve-
ment over the performance of R-CNN SCFV which, as far
as we know, is the best performance obtained in the lit-
erature when no parts information is utilized. Combining
with CL-45F, our performance can be improved to 73.5%.
This is quite close to the best performance obtained from
the method that relies on strong parts annotation. Another
interesting observation is that for this dataset, CL-45 sig-
nificantly outperforms CL-45F, which is in contrast to the
case for MIT-67. This suggests that the optimal resolution
of spatial units may vary from dataset to dataset.

Object classification: PASCAL-2007. PASCAL VOC
2007 has 9963 images with 20 object categories. The task is
to predict the presence of each object in each image. Note

Table 2: Comparison of results on Birds-200. Note that
the method with “use parts” mark requires parts annotations
and detection while our methods do not employ these anno-
tations so they are not directly comparable with us.

Methods Accuracy Remark
CNN-Global 59.2% no parts.
CNN-Jitter 60.5% no parts
R-CNN SCFV [6] 66.4% no parts
*CL-45 72.4% no parts
*CL-45F 68.4% no parts
*CL-45C 73.5% no parts
*CL + CNN-Global  72.4% no parts
*CL + CNN-Jitter 73% no parts

Global CNN-FT [4] 66.4 % no parts, fine tunning
Parts-RCNN-FT [21] 76.37 % use parts, fine tunning
Parts-RCNN [21] 68.7 % use parts, no fine tunning
CNNaug-SVM [3] 61.8% -

CNN-SVM [3] 53.3% CNN global

DPD+CNN [22] 65.0% use parts

DPD [23] 51.0% -

that most object categories in PASCAL-2007 are also in-
cluded in ImageNet. So ImageNet can be seen as a super-set
of PASCAL-2007. The results on this dataset are shown in
Table 3. From Table 3, we can see that the best performance
of our method (CL + CNN-Jitter) achieves comparable per-
formance to the state-of-the-art. Also, using only features
extracted from a convolutional layer, our method CL-45C
outperforms the CNN-Global and CNN-Jitter which use
DCNNs s to extract global image features. However, our CL-
45C does not outperform R-CNN and our best performing
method CL + CNN-Jitter does not achieve significant per-
formance improvement as what it has achieved in MIT-67
and Birds-200. This is probably due to the fact that the 1000
categories in the ImageNet training set included the 20 cat-
egories in PASCAL-2007. Thus the fully-connected layer
actually contains some classifier-level information and im-
plicitly utilizes more training data from ImageNet. For this
reason, using fully-connected layer activations can be more
helpful for this dataset.

Attribute Classification: H3D. In recent years, attributes
of objects, which are semantic or abstract qualities of ob-
jects and can be shared by many categories, have gained
increasing attention due to their potential application in
zero/one-shot learning and image retrieval [27, 28]. In this
experiment, we evaluate the proposed method on the task
of predicting attributes of humans. We use the H3D dataset
[16] which defines 9 attributes for a subset of ‘person’ im-
ages from PASCAL VOC 2007. The results are shown
in Table 4. Again, our method shows quite promising re-
sults. Merely using information from a convolutional layer,
our approach achieved 77.3% classification accuracy which
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Table 3: Comparison of results on PASCAL VOC 2007.

Methods mAP Remark
CNN-Global 71.7% -

CNN-Jitter 75.0% -

R-CNN SCFV [6] 76.9% -

*CL-45 72.6% -

*CL-45F 71.3% -

*CL-45C 75.0% -

*CL + CNN-Global 76.5% -

*CL + CNN-Jitter 77.8% -

CNNaug-SVM [3] 77.2%  with augmented data
CNN-SVM [3] 73.9%  no augmented data
NUS [24] 70.5% -

GHM [25] 64.7% -

AGS [26] 71.1% -

Table 4: Comparison of results on the Human attribute
dataset.

Methods mAP Remark

CNN-Global 741% -

CNN-Jitter 74.6% -

R-CNN SCFV [6] 731% -

*CL-45 753% -

*CL-45F 70.7% -

*CL-45C 773% -

*CL + CNN-Global 78.1% -

*CL + CNN-Jitter 783% -

PANDA [29] 78.9 needs poselet annotation
CNN-FT [4] 73.8 CNN-Global, fine tunning
CNNaug-SVM [3] 73.0%  with augmented data
CNN-SVM [3] 70.8%  no augmented data
DPD [24] 69.9% -

outperforms R-CNN SCFV by 4%. By combining with
CNN-Jitter, our method becomes comparable to PANDA
[29] which needs complicated poselet annotations and de-
tection.

4.2.2 Computational cost

To give an intuitive idea of the computational cost incurred
by our method, we report the average time spent on extract-
ing image representations of various methods in Table 5.
As can be seen, the computational cost of our method is
comparable to that of CNN-Global and CNN-Jitter. This
is quite impressive given that our method achieves signifi-
cantly better performance than these two methods. SCFV,
however, requires much more computational time?. Note

2A recent study shows that R-CNN based encoding methods such as
[5] might be speeded up by treating the fully connected layer as a convo-

Table 5: Average time used for extracting an image rep-
resentation for different methods. The time can be break
down into two parts, time spend on extracting CNN features
and time spend on performing pooling.

Method CNN Extraction Pooling Total
*CL-45 0.45s 0.14s 0.6s
*CL-45F 1.3s 0.27s 1.6s
*CL-45C 1.75s 0.41s 2.2s
CNN-Global 0.4s 0Os 0.4s
CNN-Jitter 1.8s 0Os 1.8s
R-CNN SCFV [6] 19s 0.3s 19.3s

Table 6: Comparison of results obtained by using different
convolutional layers.

Method MIT-67 Birds200 PASCALO7 H3D

CL-34 61.7%  64.6% 66.3% 74.7%
CL-34F 614% 61.4% 64.9% 70.4%
CL-34C 64.1%  66.8% 68.5% 75.9%
CL-45C 68.8% 73.5% 75.0% 77.3%

that our speed evaluation is based on our naive MATLAB
implementation, and our method may be further accelerated
by a C++ or GPU implementation.

4.3. Analysis of components of our method

From the above experiments, the advantage of using the
proposed method has been clearly demonstrated. In this
section we further examine the effect of various components
in our method.

4.3.1 Using different convolutional layers

First, we are interested to examine the performance of us-
ing convolutional layers other than the 4th and 5th convolu-
tional layers. We experiment with the 3th and 4th convolu-
tional layers and report the resulting performance in Table 6.
From the result we can see that using 4-5th layers achieves
superior performance over using the 3-4th layers. This is
not surprising since it has been observed that the deeper the
convolutional layer, the better discriminative power[7].

4.3.2 Comparison of different pooling schemes

The cross-layer pooling is an essential component in our
method. In this experiment, we compare it against other
possible alternative pooling approaches, they are: directly

lutional layer [30]. However, it still requires more ‘CNN extraction’ time
than ours since beside the same convolutional feature extraction step as re-
quired by our method it also requires additional convolution operations to
extract the fully connected layer activations.
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Table 7: Comparison of results obtained by using different
pooling schemes.

Method MIT-67 Birds200 PASCALO7 H3D

Direct Max 42.6%  52.7% 48.0% 61.1%
Direct Sum 48.4% 49.0% 51.3% 66.4%
SPP [11] 56.3%  59.5% 67.3% 73.1%
SCFV [6] 61.9%  64.7% 69.0% 76.5%
CL-single 65.8% 72.4% 72.6 % 75.3%

performing sum-pooling with power normalization (Direct
Sum) and max-pooling (Direct Max), using spatial pyramid
pooling as suggested in [11] (SPP), applying the SCFV en-
coding [6] to encode extracted local features and perform
pooling (SCFV). To simplify the comparison, we only re-
port results on the best performing single resolution setting
for each dataset, that is, CL-45F for MIT-67 and CL-45
for the remaining three datasets. We perform those pool-
ing methods on local features (from 3x3 spaital units) ex-
tracted from the 4th convolutional layer since the proposed
method can be seen as a way to pool local features from
this layer. The results are shown in Table 7. As can be
seen, the proposed cross-layer pooling significantly out-
performs directly applying max-pooling or sum-pooling or
even spatial-pyramid pooling. By applying another layer of
encoding on local features before pooling, the classification
accuracy can be greatly boosted. However, in most cases, its
performance is still much inferior to the proposed method,
as seen in cases of MIT-67, PASCAL-07 and Birds-200.
The only exception is the result on H3D, where SCFV per-
forms slightly better than our method. However, it needs ad-
ditional codebook learning and encoding computation while
our method does not. Considering this computational ben-
efit and superior performance in most cases, cross-layer
pooling is clearly preferable to the other methods.

4.3.3 Feature sign quantization

Finally, we demonstrate the effect of applying a feature sign
quantization to the pooled feature. Feature sign quantiza-
tion quantizes a feature to 1 if it is positive, -1 if it is neg-
ative and O if it equals to 0. In other words, we use 2 bits
to represent each dimension of the pooled feature vector.
This scheme greatly saves the memory usage. Similar to
the above experiment setting, we only report the result on
the best performed single resolution setting for each dataset.
The results are shown in Table 8. Surprisingly, this coarse
quantization scheme does not degrade the performance too
much, in three datasets, MIT-67, PASCAL-07 and H3D, it
achieves almost the same performance as the original fea-
ture. Note that similar quantization scheme has been also
explored in [8], however it reports signficant performance

Table 8: Results obtained by using feature sign quantiza-
tion.

Dataset Feature sign quantization  Original
MIT-67 65.2% 65.8%
Birds-200 71.1% 72.4%
PASCALO7 71.2% 71.3%
H3D 75.4% 75.3%

drop if applied to convolutional layer feature. For example,
in the Table 7 of [8], by binarizing conv-5, the performance
drops around 5%. In contrast, our representation seems to
be less sensitive to this coarse quantization.

5. Conclusion

In this paper, we proposed a new method called cross-
convolutional layer pooling to create image representations
from the convolutional activations of a pretrained CNN.
Through extensive experiments we have shown that this
method enjoys good classification performance and at low
computational cost. Our discovery suggests that if used ap-
propriately, convolutional layers of a pretrained CNN con-
tains very useful information and can be turned into a pow-
erful image representation.

In our future work, we will further explore this idea by
training a convolutional neural network with the cross-layer
pooling module as one of its layers.
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