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Topological data analysis offers a rich source of valuable information to
study vision problems. Yet, so far we lack a theoretically sound connec-
tion to popular kernel-based learning techniques, such as kernel SVMs or
kernel PCA. In this work, we establish such a connection by designing a
multi-scale kernel for persistence diagrams (see Fig. 1), a stable summary
representation of topological features in data. We show that this kernel is
positive definite and prove its stability with respect to the 1-Wasserstein
distance. Experiments on two benchmark datasets for 3D shape classifica-
tion/retrieval and texture recognition show considerable performance gains
of the proposed method compared to an alternative approach that is based
on the recently introduced persistence landscapes.
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Figure 1: Overview of our contribution.

Persistence diagrams. Persistence diagrams are a concise description of
the topological changes occurring in a growing sequence of shapes, called
filtration. In particular, during the growth of a shape, holes of different di-
mension (i.e., gaps between components, tunnels, voids, etc.) may appear
and disappear. Intuitively, a k-dimensional hole, born at time b and filled at
time d, gives rise to a point (b,d) in the kth persistence diagram. A persis-
tence diagram is thus a multiset of points in R2.

Filtrations from functions. A standard way of obtaining a filtration is
to consider the sublevel sets f−1(−∞, t] of a function f : Ω→ R defined on
some domain Ω, for t ∈R. It is easy to see that the sublevel sets indeed form
a filtration parametrized by t. We denote the resulting persistence diagram
by D f . Example(s): Consider a grayscale image, where Ω is the rectangular
domain of the image and f is the grayscale value at any point of the domain
(i.e., at a particular pixel). A sublevel set would thus consist of all pixels
of Ω with value up to a certain threshold t. Another example would be a
piecewise linear function on a triangular mesh Ω, such as the popular heat
kernel signature [6]. Yet another commonly used filtration arises from point
clouds P embedded in Rn, by considering the distance function dP(x) =
minp∈P ‖x− p‖ on Ω = Rn. The sublevel sets of this function are unions of
balls around P.

The persistence scale-space (PSS) kernel. We propose a stable multi-
scale kernel kσ for the set of persistence diagrams D. This kernel will be
defined via a feature map Φσ :D→ L2(Ω), with Ω⊂R2 denoting the closed
half plane above the diagonal, i.e., Ω = {x = (x1,x2) ∈ R2 : x2 ≥ x1}.

Since, a persistence diagram D can be uniquely represented as a sum of
Dirac delta distributions, we use the sum as an initial condition for a heat
diffusion problem with a Dirichlet boundary condition on the diagonal. The
solution of this partial differential equation (see paper) is an L2(Ω) function
for any chosen scale parameter σ > 0. We define the feature map (see Fig. 2
for an illustration) Φσ : D→ L2(Ω) at scale σ > 0 of a persistence diagram
D as Φσ (D) = u|t=σ with u : Ω×R≥0→ R
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being the closed-form solution to the aforementioned partial differential
equation. This map yields the persistence scale space kernel kσ on D as

kσ (F,G) = 〈Φσ (F),Φσ (G)〉L2(Ω) (2)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage or on arXiv at http://arxiv.org/abs/1412.6821.

and we can derive a simple expression for evaluating the kernel:
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where q = (b,a) is q = (a,b) mirrored at the diagonal.
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Figure 2: The feature map Φσ (D) as a function in L2(Ω) at growing σ .

With the p-Wasserstein distance (for positive real p) defined as
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we prove the following result:

Theorem 1 The kernel kσ is 1-Wasserstein stable.

We further prove that Theorem 1 is sharp in the sense that no non-trivial
(i.e., ∀F,G ∈D : k(F,G) 6= 0) additive kernel (see paper for definition) can
be stable w.r.t. the p-Wasserstein distance when p > 1.

Evaluation. In the paper, we report results on two vision tasks where per-
sistent homology has already been shown to provide valuable discriminative
information [3]: shape classification/retrieval (on SHREC 2014 [5]) and
texture image classification (on the Outex_TC_00000 benchmark [4]);
see Fig. 3 for an illustration of the datasets. We primarily compare against
a kernel that can be constructed based on Bubenik’s concept of persistence
landscapes [2], a representation of persistence diagrams as functions in the
Banach space Lp(R2). For p = 2, we can use the Hilbert space structure of
L2(R2) to construct a kernel analogously to (2). Our experimental results
are listed in the paper.
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Figure 3: Datasets used in our experiments (see paper).

Implementation. DIPHA [1] is freely available at http://goo.gl/
EXSpm1, the kernel implementation (compatible with DIPHA) will be made
available right after the conference.
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